Biomedical Engineering Reference
In-Depth Information
59. Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is
induced by homocysteine, promotes detachment-mediated programmed cell death, and
contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem.
2003;278(32):30317-27.
60. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, et al. Homocysteine
increases the expression of vascular endothelial growth factor by a mechanism involving
endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004;279
(15):14844-52.
61. Kerkeni M, Tnani M, Chuniaud L, Miled A, Maaroufi K, Trivin F. Comparative study on
in vitro effects of homocysteine thiolactone and homocysteine on HUVEC cells: evidence for
a stronger proapoptotic and proinflammative homocysteine thiolactone. Mol Cell Biochem.
2006;291(1-2):119-26.
62. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neuro-
degenerative disorders. Trends Neurosci. 2003;26(3):137-46.
63. Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase
in the yeast Saccharomyces cerevisiae. EMBO J. 1991;10(3):593-8.
64. Jakubowski H. The determination of homocysteine-thiolactone in biological samples. Anal
Biochem. 2002;308(1):112-9.
65. Jakubowski H, Goldman E. Editing of errors in selection of amino acids for protein synthesis.
Microbiol Rev. 1992;56(3):412-29.
66. Tuite NL, Fraser KR, O'Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a
perturbation of branched-chain amino acid biosynthesis. J Bacteriol. 2005;187(13):4362-71.
67. Sikora M, Jakubowski H. Homocysteine editing and growth inhibition in Escherichia coli.
Microbiology. 2009;155(Pt 6):1858-65.
68. Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci.
2004;61(4):470-87.
69. Jakubowski H. Pathophysiological consequences of homocysteine excess. J Nutr. 2006;136(6
Suppl):1741S-9.
70. Jacobsen DW. Homocysteine targeting of plasma proteins in hemodialysis patients. Kidney
Int. 2006;69(5):787-9.
71. Jacobsen DW, Catanescu O, Dibello PM, Barbato JC. Molecular targeting by homocysteine:
a mechanism for vascular pathogenesis. Clin Chem Lab Med. 2005;43(10):1076-83.
72. Glowacki R, Bald E, Jakubowski H. Identification and origin of Nepsilon-homocysteinyl-
lysine isopeptide in humans and mice. Amino Acids. 2010;39(5):1563-9.
73. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible
mechanism for pathological consequences of elevated homocysteine levels. Possible mecha-
nism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272
(3):1935-42.
74. Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein
homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res.
2000;87(1):45-51.
75. Jakubowski H. Translational incorporation of S-nitrosohomocysteine into protein. J Biol
Chem. 2000;275(29):21813-6.
76. Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for
atherosclerosis. J Nutr. 2001;131(11):2983S-7.
77. Jakubowski H. Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation
of homocysteine into protein in humans. Clin Chem Lab Med. 2003;41(11):1462-6.
78. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological
consequences of elevated homocysteine levels. FASEB J. 1999;13(15):2277-83.
79. Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocys-
teine-linked disease. J Biol Chem. 2002;277(34):30425-8.
Search WWH ::




Custom Search