Information Technology Reference
In-Depth Information
Let us denote
Þ
the estimate of the decision variables dependent estimated
state variables x ð t Þ . The system ( 2 ) can be rewritten as:
t
8
<
0
1
A i xt
ðÞþ
B i ut
ðÞþ
F i d
ð
t
Þ
ðÞ ¼ P
r
@
A
xt
_
h i ^
ðÞ
x
ð
t
þ
N i xt
ðÞ
ut
ðÞþDð
t
Þ
ð
Þ
34
:
i¼1
yt
ðÞ ¼
Cx t
ðÞ
where
t
Þ
acts like a disturbance on the dynamic of the fuzzy bilinear model and is
de
ned by:
0
@
1
A
A i xt
ðÞþ
B i ut
ðÞ
X
r
t
Þ ¼
1 ð
h i ð
x
ð
t
ÞÞ
h i ð^
x
ð
t
ÞÞÞ
þ
N i xt
ðÞ
ut
ðÞþ
F i d
ð
t
Þ
ð
35
Þ
The dynamic of the state estimation error becomes:
X
r
e
_
ð
t
Þ ¼
h i ð^
x
ð
t
ÞÞ
ð
H i e
ð
t
Þþ
T
t
Þ
Þ
ð
36
Þ
i¼1
Assumption 1
kDð
t
Þk ck
e
ð
t
Þk
, i.e.
t
Þ
is Lipschitz in i.e.
ð
t
Þ
where
c
is a positive
scalar.
This assumption, used in previous works (Bergsten et al. 2002 ; Khalil 1996 ),
will be useful to derive design conditions. The following lemma will be also used
(Boyd et al. 1994 ).
Lemma 1 For any matrices X and Y with appropriate dimensions, the following
property holds for any positive scalar
e
:
X T Y
Y T X
X T X
þ e 1 Y T Y
þ
e
ð
Þ
37
cient design conditions for fuzzy bilinear
models subjects to unknown inputs ( 2 ) with the decision variable is unmeasurable.
The following theorem gives suf
Theorem 2 For a given
0, the fuzzy bilinear observer ( 5 ) converges asymp-
totically to the state of the fuzzy bilinear model ( 2 ), if there exist a symmetric
de
c [
nite positive matrix P, matrices Wi, i , V i , S, R i and scalar
e
such that the following
8
...
linear conditions hold
i
¼
1
r:
T
P þ P
þ ec
2 IP
þ
SC
0
ð
38
Þ
\
e I
R i ¼
ð
P
þ
SC
Þ
B i
ð
39
Þ
Search WWH ::




Custom Search