Information Technology Reference
In-Depth Information
proposed approach) however detection rate is unknown with a larger computation
time. In the rest of the result of Table 10 the detection rate and computation time of
the proposed MLP approach are superior.
The future work should be directed towards developing hybrid neural network to
increase the ef
ciency of intrusion detection and to deal the dynamic large data
stream to secure from network intrusion.
References
Anderson, J. (1995). An introduction to neural networks. Cambridge: MIT Press.
Anyanwu, L. O., Keengwe, J., & Arome, G. A. (2011). Scalable intrusion detection with recurrent
neural networks. International Journal of Multimedia and Ubiquitous Engineering, 6(1), 21 - 28.
Aziz, A. S. A., Azar, A. T., Hassanien, A. E., & Hanafy, S. E. O. (2012). Continuous features
discretization for anomaly intrusion detectors generation. In The 17th Online World
Conference on Soft Computing in Industrial Applications (WSC17), December 10
21.
Aziz, A. S. A., Azar, A. T., Hassanien, A. E., & Hanafy, S. E. O. (2014). Continuous features
discretization for anomaly intrusion detectors generation. In Soft computing in industrial
applications (pp. 209
-
221). Switzerland: Springer International Publishing.
Abdel-Aziz, A. S., Hassanien, A. E., Azar, A. T., & Hanafi, S. E. O. (2013). Machine learning
techniques for anomalies detection and classification. Advances in security of information and
communication networks (pp. 219
-
229). Berlin Heidelberg: Springer.
Barry, S., & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology,
43(3), 413
-
423.
Behjat, A. R., Vatankhah, N., & Mustapha, A. (2014). Feature subset selection using genetic
algorithm for intrusion detection system. Advanced Science Letters, 20(1), 235
-
238.
Bezdek, J. C. (1994). What is computational intelligence? Computational intelligence imitating
life (pp. 1 - 12). New York: IEEE Press.
Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble design of
intrusion detection systems. Computers and Security, 24(4), 295 - 307.
Chittur, A. (2001). Model generation for an intrusion detection system using genetic algorithms.
High School Honors Thesis, Ossining High School. In Cooperation with Columbia Univ.
Accessed on November 27, 2013.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1), 37
-
46.
-
D
ę
bska, B., & Guzowska-
wider, B. (2011). Application of artificial neural network in food
classification. Analytica Chimica Acta, 705(1), 283
Ś
291.
-
Denning, D. E.
(1987). An intrusion-detection model.
IEEE Transactions on Software
232.
Devaraju, S., & Ramakrishnan, S. (2011). Performance analysis of intrusion detection system
using various neural network classi ers. In Recent Trends in Information Technology
(ICRTIT), June 2011 International Conference on (pp. 1033
Engineering, 13(2), 222
-
1038). IEEE.
Eid, H. F., Azar, A. T., & Hassanien, A. E. (2013, January). Improved real-time discretize network
intrusion detection system. In Proceedings of seventh international conference on bio-inspired
computing: theories and applications (BIC-TA 2012) (pp. 99 - 109). India: Springer.
El Kadhi, N., Hadjar, K., & El Zant, N. (2012). A mobile agents and arti cial neural networks for
intrusion detection. Journal of Software, 7(1), 156 - 160.
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., & Stolfo, S. (2002). A geometric framework for
unsupervised anomaly detection. Applications of data mining in computer
-
security
(pp. 77 - 101). US: Springer.
Search WWH ::




Custom Search