Information Technology Reference
In-Depth Information
Knowing that
log H þ
pH m ¼
ð
½
Þ
ð
30
Þ
H þ
OH
K w ¼
½
½
;
ð
31
Þ
Equation ( 29 ) can be then rewritten as:
210 pH m pK a2
1
þ
ð
Þ
10 pH m 14
10 pH m
W a4 þ
þ
W b4
10 pH m pK a2
¼
0
ð
32
Þ
10 pH m pK a1
1
þ
þ
￿
The mass balance yields to:
A dh
dt ¼
q 1 þ
q 2 þ
q 3
q 4
ð
33
Þ
h 0 : 5 , Eq. ( 33 ) becomes:
Taking into account that the exit
fl
ow rate q 4 ¼
C v :
A dh
h 0 : 5
dt ¼
q 1 þ
q 2 þ
q 3
C v
ð
34
Þ
where C v is the constant valve coef
cient.
The differential equations of the ef
fl
uent reaction invariants
ð
W a4 ;
W b4 Þ
can be
￿
determined as follows:
Ah dW a4
dt ¼
q 1 ð
W a1
W a4 Þþ
q 2 ð
W a2
W a4 Þþ
q 3 ð
W a3
W a4 Þ
ð
35
Þ
Ah dW b4
dt ¼
q 1 ð
W b1
W b4 Þþ
q 2 ð
W b2
W b4 Þþ
q 3 ð
W b3
W b4 Þ
ð
36
Þ
Nominal model parameters and operating conditions (Xiao et al. 2014 ) are given
in Table 6 .
The static nonlinearity of this process can be represented by the titration curve
shown in Fig. 6 with a beginning pH of 2.7 and an ending pH of 10.7. A brief glance
at the curve indicates that the process of pH neutralization is highly nonlinear.
Table 6 Operation
parameters of the pH
neutralization process
q 1 ¼ 16 : 6ml/s
W a1 ¼ 3 10 3 mol/l
q 2 ¼ 0
:
55ml/s
10 2 mol/l
W a2 ¼
3
q3 ¼ 15
:
6 ml/s
10 3 mol/l
W a3 ¼
3
:
05
h ¼ 14
:
0cm
W b1 ¼ 0
A ¼ 207 cm 2
10 2 mol/l
W b2 ¼ 3
C v ¼ 8 : 75 ml/cm/s
10 5 mol/l
W b3 ¼ 5
pK a1 ¼ 6 : 35
pH 4 ¼ 7
pK a2 ¼ 10
:
25
s ¼ 0
:
5
Search WWH ::




Custom Search