Environmental Engineering Reference
In-Depth Information
available genetic, biochemical, chemical and microbiological tools to understand
the process of methane oxidation and to overcome the current limitations.
Abbreviations
ACS
acetyl-CoA synthase
AOM
anaerobic oxidation of methane
bce
before the common era ¼before Christ
BES
bromoethanesulfonate
BPS
bromopropanesulfonate
CNG
compressed natural gas
CoA
coenzyme A
CoBSH
coenzyme B mercaptoheptanoylthreonine phosphate
CODH
carbon monoxide dehydrogenase
CoMSH
coenzyme M mercaptoethanesulfonate
DFT
density functional theory
ENDOR
electron nuclear double resonance
EPR
electron paramagnetic resonance
ESEEM
electron spin echo modulation
EXAFS
extended X-ray absorption fine structure
HYSCORE
hyperfine sublevel correlation spectroscopy
LNG
liquid natural gas
MCD
magnetic circular dichroism
MCR
methyl-coenzyme M reductase
NHE
normal hydrogen electrode
NMR
nuclear magnetic resonance
SAM
S-adenosylmethionine
SOD
superoxide dismutase
Acknowledgments I thank those students, postdoctoral fellows and collaborators who have been
working on the biochemistry of methane formation, with special thanks to Dariusz Sliwa for
helping to generate Figure 1 for this paper. I gratefully acknowledge support (DE-FG02-
08ER15931) from the Chemical Sciences, Geosciences and Biosciences Division, Office of
Basic Energy Sciences, Office of Science, U.S. Department of Energy and from ARPA-E
(DE-AR0000426).
References
1. S. W. Ragsdale, J. Inorg. Biochem. 2007, 101 , 1657-1666.
2. A. F. Miller, Acc. Chem. Res. 2008 ,41 , 501-510.
3. C. Holliger, A. J. Pierik, E. J. Reijerse, W. R. Hagen, J. Am. Chem. Soc. 1993, 115 , 5651-5656.
4. D. A. Rodionov, P. Hebbeln, M. S. Gelfand, T. Eitinger, J. Bacteriol. 2006, 188 , 317-327.
Search WWH ::




Custom Search