Graphics Reference
In-Depth Information
Figure 1.1 shows the behavior of the basis functions for different values of the
parameter t
[0 , 1], for cubic Bezier-Bernstein polynomial.
1
0.45
0.9
0.4
0.8
0.35
0.7
0.3
0.6
0.25
0.5
0.2
0.4
0.15
0.3
0.1
0.2
0.05
0.1
0
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
t
t
(a)
(b)
1
0.45
0.9
0.4
0.8
0.35
0.7
0.3
0.6
0.25
0.5
0.2
0.4
0.15
0.3
0.1
0.2
0.05
0.1
0
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
t
t
(c)
(d)
Fig. 1.1. Behavior of the basis functions for cubic B-B curve.
Consider the equation of a Bezier curve in a matrix form for compact
representation. For a cubic curve, we have
V 0
V 1
V 2
V 3
P ( t )= (1
t ) t 3
t ) 3 3 t (1
t ) 2 3 t 2 (1
.
(1.20)
This can be written as
V 0
V 1
V 2
V 3
13
31
P ( t )= t 3 t 2 t 1
3
630
33 00
1000
(1.21)
= T C V .
Cohen and Risenfeld [42] have generalized this representation to
P ( t )= T C V
 
Search WWH ::




Custom Search