Biology Reference
In-Depth Information
where:
=
P ¼
y 2 2
V 2 y 3 2 Log y 2 =
y 3 2
J Log y 2 =
2
þ
V 2 Log 1
þ
4
L
α
21
þ
=
y 3 2
V 3 y 3 2 Log y 4 =
y 3 2
þð
V 3 þ
L
α
V 2 Þ
Log 1
þ
4
21
þ
L 0 V 3
y 4 2
þ
ð
V 4 þ
Þ
Log 1
þ
=
4
and
H ¼
V 2 y 3 2 Log y 2 =
y 3 2
L ' V 3 y 4 2 Log y 3 =
y 4 2
V 3 y 3 2 Log y 4 =
L
α
41
ð
þ
Þþ
21
ð
þ
Þ
y 3 2
21
ð Þ:
In this case, parameters appearing only in P *, like V 4 , are modulating the
localization of the fixed point; hence, the values of the stationary concentrations
of the glycolytic metabolites [cf. Demongeot et al. ( 2007a , 2007b ) and Glade et al.
( 2007 ) for a more general approach of the potential-Hamiltonian decomposition].
Let us suppose now that we measure the outflows J 1 and J 2 (cf. Fig. 4.12 ). Then
from the system (S1) we can calculate the sharing parameter
þ
(which regulates the
pentose pathway and the low glycolysis dispatching) from the steady-state
equations equalizing the in- and outflows at each step. By denoting the stationary
state x *
α
{ x i *} i ¼ 1,4 , we have:
V 1 x 1 n
¼
x 1 n
V 2 x 2
x 2 Þ
V 2 x 3
x 3 Þ¼
1
þ
Þ¼
J
;
1
þ
L
α
1
þ
J
V 2 x 2
x 2 Þ¼
V 3 x 3
x 3 Þ
ð
1
αÞ
1
þ
J 1 ;
1
þ
L 0 V 3 Þ=
¼
J 2 ð
V 4 þ
V 4
Hence, we can calculate
α
by using the following formula:
2 J 2 LV 2 ð
L 0 V 3 Þþα
L 0 V 3 Þ
α
V 4 þ
ð
JV 4
J 2 LV 2 ð
V 4 þ
Þ þ
J 1 V 4
J
2
K 0 ¼ 0 ;
¼ 0or α
αð 1
K
Þþ
where we have denoted:
L 0 V 3 Þ
and K 0 ¼ð
L 0 V 3 Þ:
K
¼
JV 4 =
J 2 LV 2 ð
V 4 þ
J 1 V 4
J
Þ=
J 2 LV 2 ð
V 4 þ
When the flux of the k th step in a metabolic network has reached its stable
stationary value
Φ k , then the notion of control strength C ki exerted by the metabolite
x i on this flux
Φ k is defined by (Kaczer and Burns 1973 ; Wolf and Heinrich 2000 ):
C ki ¼ @
Log
ΔΦ k =@
Log
Δ
x i
and we have:
8
k
¼
1
;
n
; Σ 1 ;n C ki ¼
1
:
Search WWH ::




Custom Search