Biology Reference
In-Depth Information
modulated by the AMP-activated protein kinase pathway. Hum Mol Genet 17(5):667-78.
doi: 10.1093/hmg/ddm339
Sonntag AG, Dalle Pezze P, Shanley DP, Thedieck K (2012) A modelling-experimental approach
reveals insulin receptor substrate (IRS)-dependent regulation of adenosine monosphosphate-
dependent kinase (AMPK) by insulin. FEBS J 279(18):3314-28. doi: 10.1111/j.1742-
4658.2012.08582.x
Srivastava RA, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS (2012)
AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and
carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res 53(12):2490-514.
doi: 10.1194/jlr.R025882
Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T et al. (1996) Mammalian
AMP-activated protein kinase subfamily. J Biol Chem 271(2):611-4
Starling EH, Visscher MB (1927) The regulation of the energy output of the heart. J Physiol 62
(3):243-61
Steeghs K, Benders A, Oerlemans F, de Haan A, Heerschap A, Ruitenbeek W et al. (1997) Altered
Ca 2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase
deficiencies. Cell 89(1):93-103
Steinberg SF (2012) Cardiac actions of protein kinase C isoforms. Physiology (Bethesda) 27
(3):130-9. doi: 10.1152/physiol.00009.2012
Steinberg GR (2013) AMPK and the endocrine control of energy metabolism. Mol Cell Endocrinol
366(2):125-6. doi: 10.1016/j.mce.2013.01.003
Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89(3):1025-78.
doi: 10.1152/physrev.00011.2008
Stockler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical
aspects, treatment and pathophysiology. Subcell Biochem 46:149-66
Stoppani J, Hildebrandt AL, Sakamoto K, Cameron-Smith D, Goodyear LJ, Neufer PD (2002)
AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat
skeletal muscle. Am J Physiol Endocrinol Metab 283(6):E1239-48. doi: 10.1152/
ajpendo.00278.2002
Streijger F, Oerlemans F, Ellenbroek BA, Jost CR, Wieringa B, Van der Zee CE (2005) Structural
and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit.
Behav Brain Res 157(2):219-34. doi: 10.1016/j.bbr.2004.07.002
Strogolova V, Orlova M, Shevade A, Kuchin S (2012) Mitochondrial porin Por1 and its homolog
Por2 contribute to the positive control of Snf1 protein kinase in Saccharomyces cerevisiae.
Eukaryot Cell 11(12):1568-72. doi: 10.1128/EC.00127-12
Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D (2006) Dissecting the role of
5 0 -AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein
kinase. J Biol Chem 281(43):32207-16. doi: 10.1074/jbc.M606357200
Suzuki A, Okamoto S, Lee S, Saito K, Shiuchi T, Minokoshi Y (2007) Leptin stimulates fatty acid
oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse
C2C12 myoblasts by changing the subcellular localization of the alpha2 form of
AMP-activated protein kinase. Mol Cell Biol 27(12):4317-27. doi: 10.1128/MCB.02222-06
Tachikawa M, Ikeda S, Fujinawa J, Hirose S, Akanuma S, Hosoya K (2012) Gamma-
Aminobutyric acid transporter 2 mediates the hepatic uptake of guanidinoacetate, the creatine
biosynthetic precursor, in rats. PLoS One 7(2):e32557. doi: 10.1371/journal.pone.0032557
Taegtmeyer H (2010) Tracing cardiac metabolism in vivo: one substrate at a time. J Nucl Med 51
(Suppl 1):80S-7S
Taegtmeyer H, Ingwall JS (2013) Creatine—a dispensable metabolite? Circ Res 112(6):878-80.
doi: 10.1161/CIRCRESAHA.113.300974
Taegtmeyer H, Wilson CR, Razeghi P, Sharma S (2005) Metabolic energetics and genetics in the
heart. Ann N Y Acad Sci 1047:208-18
Search WWH ::




Custom Search