Biology Reference
In-Depth Information
Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U (2012b) Regulation of
yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8:623. doi: 10.1038/
msb.2012.55
Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM et al.
(2011) Enhancing AMPK activation during ischemia protects the diabetic heart against
reperfusion injury. Am J Physiol Heart Circ Physiol 300(6):H2123-34. doi: 10.1152/
ajpheart.00707.2010
Pang T, Xiong B, Li JY, Qiu BY, Jin GZ, Shen JK et al. (2007) Conserved alpha-helix acts as
autoinhibitory sequence in AMP-activated protein kinase alpha subunits. J Biol Chem 282
(1):495-506. doi: 10.1074/jbc.M605790200
Pinter K, Grignani RT, Czibik G, Farza H, Watkins H, Redwood C (2012) Embryonic expression
of AMPK gamma subunits and the identification of a novel gamma2 transcript variant in adult
heart. J Mol Cell Cardiol 53(3):342-9. doi: 10.1016/j.yjmcc.2012.05.017
Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S, Feil SC et al. (2003) AMPK beta
subunit targets metabolic stress sensing to glycogen. Curr Biol 13(10):867-71
Polge C, Jossier M, Crozet P, Gissot L, Thomas M (2008) Beta-subunits of the SnRK1 complexes
share a common ancestral function together with expression and function specificities; physical
interaction with nitrate reductase specifically occurs via AKINbeta1-subunit. Plant Physiol 148
(3):1570-82. doi: 10.1104/pp. 108.123026
Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D (1998) Dual regulation of the
AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in
skeletal muscle. EMBO J 17(6):1688-99. doi: 10.1093/emboj/17.6.1688
Pucar D, Dzeja PP, Bast P, Juranic N, Macura S, Terzic A (2001) Cellular energetics in the
preconditioned state: protective role for phosphotransfer reactions captured by 18O-assisted
31P NMR. J Biol Chem 276(48):44812-9. doi: 10.1074/jbc.M104425200
Qi J, Gong J, Zhao T, Zhao J, Lam P, Ye J et al. (2008) Downregulation of AMP-activated protein
kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J 27
(11):1537-48. doi: 10.1038/emboj.2008.92
Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid
cycle after 35 years. Diabetes Metab Rev 14(4):263-83
Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in
insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1(7285):785-9
Riek U, Scholz R, Konarev P, Rufer A, Suter M, Nazabal A et al. (2008) Structural properties of
AMP-activated protein kinase: dimerization, molecular shape, and changes upon ligand bind-
ing. J Biol Chem 283(26):18331-43. doi: 10.1074/jbc.M708379200
Rogne M, Tasken K (2013) Cell signalling analyses in the functional genomics era. N Biotechnol
30(3):333-8. doi: 10.1016/j.nbt.2013.01.003
Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels
versus demons in a heart-breaking tale. Physiol Rev 90(4):1507-46. doi: 10.1152/
physrev.00054.2009
Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1:
a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751-E760. doi: 10.1152/
ajpendo.00745.2009
Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M et al. (2004) AMP-activated
protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunc-
tion, apoptosis, and injury. J Clin Invest 114(4):495-503. doi: 10.1172/JCI19297
Sackett D (2010) Evolution and coevolution of tubulin's carboxy-terminal tails and mitochondria.
In: Svensson OL (ed) Mitochondria: structure, function and dysfunction. Nova Biomedical
Books, New York, pp 789-810
Saetersdal T, Greve G, Dalen H (1990) Associations between beta-tubulin and mitochondria in
adult isolated heart myocytes as shown by immunofluorescence and immunoelectron micros-
copy. Histochemistry 95(1):1-10
Search WWH ::




Custom Search