Biology Reference
In-Depth Information
Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H (2001) Cell cycle regulation via p53
phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-
4-carboxamide-1-beta-D-ribofuranoside,
in a human hepatocellular carcinoma cell
line.
Biochem Biophys Res Commun 287(2):562-7. doi: 10.1006/bbrc.2001.5627
Ingwall JS (2002) Is creatine kinase a target for AMP-activated protein kinase in the heart? J Mol
Cell Cardiol 34(9):1111-20
Ingwall JS (2006) On the hypothesis that the failing heart is energy starved: lessons learned from
the metabolism of ATP and creatine. Curr Hypertens Rep 8(6):457-64
Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to
support cardiac function. Circ Res 95(2):135-45
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth
and survival. Cell 115(5):577-90
Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug
targets. Annu Rev Pharmacol Toxicol 52:381-400. doi: 10.1146/annurev-pharmtox-010611-
134537
Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA (2003) PPARgamma coactivator-1alpha
expression during thyroid hormone- and contractile activity-induced mitochondrial
adaptations. Am J Physiol Cell Physiol 284(6):C1669-77. doi: 10.1152/ajpcell.00409.2002
Jacobus WE, Saks VA (1982) Creatine kinase of heart mitochondria: changes in its kinetic
properties induced by coupling to oxidative phosphorylation. Arch Biochem Biophys 219
(1):167-78
Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK)
action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA
104(29):12017-22. doi: 10.1073/pnas.0705070104
Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour
cell survival during energy stress. Nature 485(7400):661-5. doi: 10.1038/nature11066
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005) AMP-activated protein kinase
induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283-93. doi: 10.1016/j.
molcel.2005.03.027
Ju TC, Lin YS, Chern Y (2012) Energy dysfunction in Huntington's disease: insights from
PGC-1alpha, AMPK, and CKB. Cell Mol Life Sci 69(24):4107-20. doi: 10.1007/s00018-012-
1025-2
Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy
gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15-25
Kan HE, Buse-Pot TE, Peco R, Isbrandt D, Heerschap A, de Haan A (2005) Lower force and
impaired performance during high-intensity electrical stimulation in skeletal muscle of
GAMT-deficient knockout mice. Am J Physiol Cell Physiol 289(1):C113-9. doi: 10.1152/
ajpcell.00040.2005
Kang S, Chemaly ER, Hajjar RJ, Lebeche D (2011) Resistin promotes cardiac hypertrophy via the
AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun
N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 286
(21):18465-73. doi: 10.1074/jbc.M110.200022
Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K (2002) Mechanism for fatty acid
“sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive
element-binding protein by AMP-activated protein kinase. J Biol Chem 277(6):3829-35.
doi: 10.1074/jbc.M107895200
Kay L, Nicolay K, Wieringa B, Saks V, Wallimann T (2000) Direct evidence for the control of
mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ.
J Biol Chem 275(10):6937-44
Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, Xiang X et al. (2004) AMPK activity is
diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res
Commun 320(2):449-54. doi: 10.1016/j.bbrc.2004.05.188
Search WWH ::




Custom Search