Biology Reference
In-Depth Information
Dzeja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M et al. (2011a) Rearrangement of
energetic and substrate utilization networks compensate for chronic myocardial creatine kinase
deficiency. J Physiol 589(Pt 21):5193-211. doi: 10.1113/jphysiol.2011.212829
Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A (2011b) Developmental enhancement of
adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation.
PLoS One 6(4):e19300. doi: 10.1371/journal.pone.0019300
Eder M, Schlattner U, Becker A, Wallimann T, Kabsch W, Fritz-Wolf K (1999) Crystal structure
of brain-type creatine kinase at 1.41 A resolution. Protein Sci 8(11):2258-69
Eder M, Fritz-Wolf K, Kabsch W, Wallimann T, Schlattner U (2000) Crystal structure of human
ubiquitous mitochondrial creatine kinase. Proteins 39(3):216-25. doi: 10.1002/(SICI)1097-
0134(20000515)39
Edwards HV, Christian F, Baillie GS (2012) cAMP: novel concepts in compartmentalised
signalling. Semin Cell Dev Biol 23(2):181-90. doi: 10.1016/j.semcdb.2011.09.005
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W et al. (2011) Phosphor-
ylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to
mitophagy. Science 331(6016):456-61. doi: 10.1126/science.1196371
Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu Rev Physiol
63:289-325. doi: 10.1146/annurev.physiol.63.1.289
Ellington WR, Suzuki T (2007) Early evolution of the creatine kinase gene family and the capacity
for creatine biosynthesis and membrane transport. Subcell Biochem 46:17-26
Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S et al. (2007) Large-scale mapping of human
protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89. doi: 10.1038/
msb4100134
Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y et al. (2013) AMPK attenuates microtubule
proliferation in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 304(5):H749-58.
doi: 10.1152/ajpheart.00935.2011
Fell DA, Thomas S (1995) Physiological control of metabolic flux: the requirement for multisite
modulation. Biochem J 311(Pt 1):35-9
Finckenberg P, Mervaala E (2010) Novel regulators and drug targets of cardiac hypertrophy.
J Hypertens 28(Suppl 1):S33-8. doi: 10.1097/01.hjh.0000388492.73954.0b
Forcet C, Billaud M (2007) Dialogue between LKB1 and AMPK: a hot topic at the cellular pole.
Sci STKE 2007(404):pe51. doi: 10.1126/stke.4042007pe51
Fraser SA, Gimenez I, Cook N, Jennings I, Katerelos M, Katsis F et al. (2007) Regulation of the
renal-specific Na + -K + -2Cl - co-transporter NKCC2 by AMP-activated protein kinase (AMPK).
Biochem J 405(1):85-93. doi: 10.1042/BJ20061850
Frederich M, Balschi JA (2002) The relationship between AMP-activated protein kinase activity
and AMP concentration in the isolated perfused rat heart. J Biol Chem 277(3):1928-32.
doi: 10.1074/jbc.M107128200
Frederich M, Zhang L, Balschi JA (2005) Hypoxia and AMP independently regulate
AMP-activated protein kinase activity in heart. Am J Physiol Heart Circ Physiol 288(5):
H2412-21. doi: 10.1152/ajpheart.00558.2004
Frey S, Millat T, Hohmann S, Wolkenhauer O (2008) How quantitative measures unravel design
principles in multi-stage phosphorylation cascades. J Theor Biol 254(1):27-36. doi: 10.1016/j.
jtbi.2008.04.037
Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W (1996) Structure of mitochondrial creatine
kinase. Nature 381(6580):341-5. doi: 10.1038/381341a0
Frosig C, Pehmoller C, Birk JB, Richter EA, Wojtaszewski JF (2010) Exercise-induced TBC1D1
Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle.
J Physiol 588(Pt 22):4539-48. doi: 10.1113/jphysiol.2010.194811
Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M, Sanz P (2010) The
PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphoryla-
tion and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in
MIN6 beta cells. FASEB J 24(12):5080-91. doi: 10.1096/fj.10-166306
Search WWH ::




Custom Search