Biomedical Engineering Reference
In-Depth Information
145. Watanabe, K., Terada, K., Jinriki, T., and Sato, J. (2004). Effect of insulin on cephalexin
uptake and transepithelial transport in the human intestinal cell line Caco-2. Eur. J. Pharm.
Sci. 21(1):87-95.
146. Fernandez, J., Bode, B., Koromilas, A., Diehl, J.A., Krukovets, I., Snider, M.D., and
Hatzoglou, M. (2002). Translation mediated by the internal ribosome entry site of the
cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J.
Biol. Chem. 277(14):11780-11787.
147. Nielsen, C.U., Amstrup, J., Steffansen, B., Frokjaer, S., and Brodin, B. (2001). Epider-
mal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human
intestinal cell line. Am. J. Physiol. Gastrointest. Liver Physiol. 281(1):G191-G199.
148. Bravo, S.A., Nielsen, C.U., Amstrup, J., Frokjaer, S., and Brodin, B. (2004). Epidermal
growth factor decreases PEPT2 transport capacity and expression in the rat kidney prox-
imal tubule cell line SKPT0193 cl.2. Am. J. Physiol. Renal Physiol. 286(2):F385-F393.
149. Buyse, M., Berlioz, F., Guilmeau, S., Tsocas, A., Voisin, T., Peranzi, G., Merlin, D.,
Laburthe, M., Lewin, M.J.M., Roze, C., and Bado, A. (2001). PepT1-mediated epithelial
transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine.
J. Clin. Invest. 108:1483-1494.
150. Yen, P.M., and Chin W.W. (1994). New advances in understanding the molecular mech-
anisms of thyroid hormone action. Trends Endocrinol. Metab. 5:65-72.
151. Ashida, K., Katsura, T, Motohashi, H., Saito, H., and Inui, K. (2002). Thyroid hormone
regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells.
Am. J. Physiol. Gastrointest. Liver Physiol. 282:G617-G623.
152. Lu, H., and Klaassen, C. (2006). Tissue distribution and thyroid hormone regulation of
Pept1 and Pept2 mRNA in rodents. Peptides 27(4):850-857.
153. Berlioz, F., Maoret, J.J., Paris, H., Laburthe, M., Farinotti, R., and Roze, C. (2000). 2 -
Adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line. J.
Pharmacol. Exp. Ther. 294:466-472.
154. Fujita, T., Majikawa, Y., Umehisa, S., Okada, N., Yamamoto, A., Ganapathy, V., and
Leibach, F.H. (1999). -Receptor ligand-induced up-regulation of the H + /peptide trans-
porter PEPT1 in the human intestinal cell line Caco-2. Biochem. Biophys. Res. Commun.
261:242-246.
155. Satoh, J., Tsujikawa, T., Fujiyama, Y., and Bamba, T. (2003). Nutritional benefits of
enteral alanyl-glutamine supplementation on rat small intestinal damage induced by cy-
clophosphamide. J. Gastroenterol. Hepatol. 18(6):719-725.
156. Watanabe, K., Jinriki, T., and Sato, J. (2006). Effects of progesterone and norethisterone
on cephalexin transport and peptide transporter PEPT1 expression in human intestinal
cell line Caco-2. Biol. Pharm. Bull. 29(1):90-95.
157. Evans, W.E., and Relling, M.V. (1999). Pharmacogenomics: translating functional ge-
nomics into rational therapeutics. Science 286:487-491.
158. Zhang, E.Y., Fu, D.J., Pak, Y.A., Stewart, T., Mukhopadhyay, N., Wrighton, S.A., and
Hillgren, K.M. (2004). Genetic polymorphisms in human proton-dependent dipeptide
transporter PEPT1: implications for the functional role of Pro586. J. Pharmacol. Exp.
Ther. 310(2):437-445.
159. Terada, T., Irie, M., Okuda, M., and Inui, K. (2004). Genetic variant Arg57His in hu-
man H + /peptide cotransporter 2 causes a complete loss of transport function. Biochem.
Biophys. Res. Commun. 316(2):416-420.
 
Search WWH ::




Custom Search