Biomedical Engineering Reference
In-Depth Information
Desai M, Kahn I, Knoblich U et al (2011) Mapping brain networks in awake mice using combined
optical neural control and fMRI. J Neurophysiol 105:1393-1405
Gong S, Doughty M, Harbaugh CR et al (2007) Targeting Cre recombinase to specifi c neuron
populations with bacterial artifi cial chromosome constructs. J Neurosci 27:9817-9823
Gradinaru V, Mogri M, Thompson KR et al (2009) Optical deconstruction of parkinsonian neural
circuitry. Science 324:354-359
Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin
enhanced for optogenetic applications. Brain Cell Biol 36:129-139
Gradinaru V, Thompson KR, Zhang F et al (2007) Targeting and readout strategies for fast optical
neural control in vitro and in vivo. J Neurosci 27:14231-14238
Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diver-
sifying and extending optogenetics. Cell 141:154-165
Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci
13:387-392
Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of
neural activity, with single-spike temporal resolution. PLoS One 2:e299
Haubensak W, Kunwar PS, Cai H et al (2010) Genetic dissection of an amygdala microcircuit that
gates conditioned fear. Nature 468:270-276
Huber D, Petreanu L, Ghitani N et al (2008) Sparse optical microstimulation in barrel cortex drives
learned behaviour in freely moving mice. Nature 451:61-64
Hull C, Adesnik H, Scanziani M (2009) Neocortical disynaptic inhibition requires somatodendritic
integration in interneurons. J Neurosci 29:8991-8995
Kahn I, Desai M, Knoblich U et al (2011) Characterization of the functional MRI response tempo-
ral linearity via optical control of neocortical pyramidal neurons. J Neurosci 31:15086-15091
Karnik SS, Gogonea C, Patil S et al (2003) Activation of G-protein-coupled receptors: a common
molecular mechanism. Trends Endocrinol Metab 14:431-437
Kim JM, Hwa J, Garriga P et al (2005) Light-driven activation of beta 2-adrenergic receptor signal-
ing by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
Biochemistry 44:2284-2292
Kralj JM, Douglass AD, Hochbaum DR et al (2011) Optical recording of action potentials in mam-
malian neurons using a microbial rhodopsin. Nat Methods 9:90-95
Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activ-
ity. Curr Opin Neurobiol 19:544-552
Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by
optogenetic control of basal ganglia circuitry. Nature 466:622-626
Lagali PS, Balya D, Awatramani GB et al (2008) Light-activated channels targeted to ON bipolar
cells restore visual function in retinal degeneration. Nat Neurosci 11:667-675
Lee JH, Durand R, Gradinaru V et al (2010) Global and local fMRI signals driven by neurons
defi ned optogenetically by type and wiring. Nature 465:788-792
Li X, Gutierrez DV, Hanson MG et al (2005) Fast noninvasive activation and inhibition of neural
and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl
Acad Sci USA 102:17816-17821
Lin D, Boyle MP, Dollar P et al (2011) Functional identifi cation of an aggression locus in the
mouse hypothalamus. Nature 470:221-226
Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin vari-
ants with improved properties and kinetics. Biophys J 96:1803-1814
Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron
57:634-660
Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting
and characterization system for the whole mouse brain. Nat Neurosci 13:133-140
Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-
selective membrane channel. Proc Natl Acad Sci USA 100:13940-13945
Search WWH ::




Custom Search