Biomedical Engineering Reference
In-Depth Information
4. Azizi Samir, M.A.S.; Alloin, F.; Dufrense, A., Review of recent research into
cellulosic whiskers, their properties and their application in nanocomposite field,
Biomacromolecules 2005, 6, 612-26.
5. Ranby, B.G., The colloidal properties of cellulose micelles, Discussions, Faraday
Soc . 1951, 11, 158-64.
6. Araki, J.; Kuga, S., Effect of trace electrolyte on liquid crystal type of cellulose
microcrystals, Langmuir 2001, 17, 4493-6.
7. Roman, M.; Winter, W.T., Effect of sulfate groups from sulfuric acid hydrolysis on
the thermal degradation behavior of bacterial cellulose, Biomacromolecules 2004,
5, 1671-7.
8. Favier, V.; Chanzy, H.; Cavaille, J.Y., Polymer nanocomposites reinforced by
cellulose whiskers, Macromolecules 1995, 28, 6365-7.
9. Revol, J.-F.; Bradford, H.; Giasson, J.; Marchessault, R.H.; Gray, D.G., Helicoidal
self-ordering of cellulose microfibrils in aqueous suspension, Int. J. Biol. Macromol .
1992, 14, 170-2.
10. Araki, J.; Wada, M.; Kuga, S.; Okano, T., Flow properties of microcrystalline
cellulose suspension prepared by acid treatment of native cellulose, Colloids Surf.
A 1998, 142, 75-82.
11. Dinand, E.; Chanzy, H.; Vignon, M.R., Suspensions of cellulose microfibrils from
sugar beet pulp, Food Hydrocolloids 1999, 13, 275-83.
12. Podsiadlo, P.; Choi, S.-Y.; Shim, B.; Lee, J.; Cuddihy, M.; Kotov, N.A., Molecu-
larly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals,
Biomacromolecules 2005, 6, 2914-18.
13. Choi,
Y.J.;
Simonsen,
J.,
Cellulose
nanocrystal-filled
carboxymethyl
cellulose
nanocomposites, J. Nanosci. Nanotech . 2006, 6, 633-9.
14. Shin, Y.; Liu, J.; Fryxell, G.E.; Wang, L.-Q.; Samuels, W.D.; Exarhos, G.J., Ordered
hierarchical porous materials: Towards tunable size- and shape-selective microcav-
ities in nanoporous channels, Angew. Chem. Int. Ed. Engl . 2000, 39, 2707-12.
15. Feng, X.; Fryxell, G.E.; Wang, L.-Q.; Kim, A.Y.; Liu, J.; Kemner, K.M., Function-
alized monolayers on ordered mesoporous supports, Science 1997, 276, 923-6.
16. Stone Jr., V.F.; Davis, R.J., Synthesis, characterization, and photocatalytic activ-
ity of Titania and Niobia mesoporous molecular sieves, Chem. Mater .
1998, 10,
1468-74.
17. Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S., Ordered meso-
porous molecular sieves synthesized by a liquid-crystal template mechanism, Nature
1992, 359, 710-12.
18. Zhang, M.; Bando, Y.; Wada, K., Synthesis of coaxial nanotubes: Titanium oxide
sheathed with silicon oxide, J. Mater. Res . 2001, 16, 1408-12.
19. Wang, Z.; Jiang, T.; Du, Y.; Chen, K.; Yin, H., Synthesis of mesoporous titania and
the photocatalytic activity for decomposition of methyl orange, Mater. Lett . 2006,
60, 2493-6.
20. Wang, H.; Tao, X.; Newton, E., Optical properties of titanium dioxide nano-
particles/3-(2-benzothiazolyl)-7-N,N-diethylaminocoumarin/polymethyl
methacry-
late composite films, Opt. Mater . 2004, 27, 161-6.
Search WWH ::




Custom Search