Biomedical Engineering Reference
In-Depth Information
48. Yamamoto, H.; Horii, F., In-situ crystallization of bacterial cellulose 1. Influences
of polymeric additives, stirring and temperature on the formation celluloses I-Alpha
and I-Beta as revealed by cross-polarization magic-angle-spinning (Cp/Mas) C-13
Nmr-spectroscopy. Cellulose 1994 , 1(1), 57-66.
49. Yamamoto, H.; Horii, F.; Hirai, A., In situ crystallization of bacterial cellulose II.
Influences of different polymeric additives on the formation of celluloses Ia and Ib
at the early stage of incubation. Cellulose 1996 , 3(4), 229-42.
50. Tokoh, C.; Takabe, K.; Fujita, M.; Saiki, H., Cellulose synthesized by Acetobacter
xylinum in the presence of acetyl glucomannan. Cellulose 1998 , 5(4), 249-61.
51. Tokoh, C.; Takabe, K.; Sugiyama, J.; Fujita, M., CP/MAS C-13 NMR and electron
diffraction study of bacterial cellulose structure affected by cell wall polysaccharides.
Cellulose 2002 , 9(3-4), 351-60.
52. Tokoh, C.; Takabe, K.; Sugiyama, J.; Fujita, M., Cellulose synthesized by Aceto-
bacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 2002 ,
9(1), 65-74.
53. Iwata, T.; Indrarti, L.; Azuma, J. I., Affinity of hemicellulose for cellulose produced
by Acetobacter xylinum. Cellulose 1998 , 5(3), 215-28.
54. Hackney, J.M.; Atalla, R.H.; Vanderhart, D.L., Modification of crystallinity and
crystalline-structure of acetobacter-xylinum cellulose in the presence of water-
soluble Beta-1,4-linked polysaccharides-C-13-NMR Evidence. International Journal
of Biological Macromolecules 1994 , 16(4), 215-18.
55. Bootten, T.J.; Harris, P.J.; Melton, L.D.; Newman, R.H., WAXS and C-13 NMR
study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglu-
can. Carbohydrate Research 2008 , 343(2), 221-9.
56. Teeri, T.T.; Brumer, H.; Daniel, G.; Gatenholm, P., Biomimetic engineering of
cellulose-based materials. Trends in Biotechnology 2007 , 25(7), 299-306.
57. Astley, O.M.; Chanliaud, E.; Donald, A.M.; Gidley, M.J., Structure of acetobac-
ter cellulose composites in the hydrated state.
International Journal of Biological
Macromolecules 2001 , 29(3), 193-202.
58. Astley, O.M.; Chanliaud, E.; Donald, A.M.; Gidley, M.J., Tensile deformation of
bacterial cellulose composites. International Journal of Biological Macromolecules
2003 , 32(1-2), 28-35.
59. Chanliaud, E.; Burrows, K.M.; Jeronimidis, G.; Gidley, M.J., Mechanical properties
of primary plant cell wall analogues. Planta 2002 , 215(6), 989-96.
60. Chanliaud, E.; Gidley, M.J., In Vitro synthesis and properties of pectin/Acetobacter
xylinus cellulose composites. Plant Journal 1999 , 20(1), 25-35.
61. Kacurakova, M.; Smith, A.C.; Gidley, M.J.; Wilson, R.H., Molecular interactions in
bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spec-
troscopy. Carbohydrate Research 2002 , 337(12), 1145-53.
62. Touzel, J.P.; Chabbert, B.; Monties, B.; Debeire, P.; Cathala, B., Synthesis and
characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose
and cellulose/pectin composite. Journal of Agricultural and Food Chemistry 2003 ,
51(4), 981-6.
63. Cathala, B.; Rondeau-Mouro, C.; Lairez, D., et al ., Model systems for the under-
standing of lignified plant cell wall formation.
Plant Biosystems 2005 , 139(1),
93-7.
Search WWH ::




Custom Search