Biomedical Engineering Reference
In-Depth Information
112. Sahin O, Magonov S, Su C, Quate CF, Solgaard O. An atomic force microscope tip
designed to measure time-varying nanomechanical forces. Nature Nanotechnology .
2007;2(8):507-14.
113. Villarrubia JS. Algorithms for scanned probe microscope image simulation, surface
reconstruction, and tip estimation. Journal of Research of the National Institute of
Standards and Technology . 1997;102(4):425-54.
114. Snow ES, Campbell PM, Novak JP. Atomic force microscopy using single-wall C
nanotube probes. Journal of Vacuum Science and Technology B: Microelectronics
and Nanometer Structures . 2002;20(3):822-7.
115. Lee SI, Howell SW, Raman A, Reifenberger R, Nguyen CV, Meyyappan M.
Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force
microcantilevers. Nanotechnology . 2004;15(5):416-21.
116. Dunn RC. Near-filed scanning optical microscopy. Chem Review . 1999;99:2891.
117. Bhushan B, Kulkarni AV, Bonin W, Wyrobek JT. Nanoindentation and picoindenta-
tion measurements using a capacitive transducer system in atomic force microscopy.
Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and
Mechanical Properties . 1996;74(5):1117-28.
118. Unertl WN. Implications of contact mechanics models for mechanical properties
measurements using scanning force microscopy. Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films . 1999;17(4):1779-86.
119. Doerner MF, Nix WD. A method for interpreting the data from depth-sensing
indentation instruments. J Mater Res . 1986;1(4):601-9.
120. Oliver WC, Pharr GM. Improved technique for determining hardness and elastic
modulus using load and displacement sensing indentation experiments. Journal of
Materials Research . 1992;7(6):1564-80.
121. Syed Asif SA, Wahl KJ, Colton RJ, Warren OL. Quantitative imaging of nanoscale
mechanical properties using hybrid nanoindentation and force modulation. Journal
of Applied Physics . 2001;90(3):1192-1200.
122. Wimmer R, Lucas BH, Tsui TY, Oliver WC. Longitudinal hardness and Young's
modulus of spruce tracheid secondary walls using nanoindentation technique. Wood
Science and Technology . 1997;31(2):131-41.
123. Wimmer R, Lucas BN. Comparing mechanical properties of secondary wall and
cell corner middle lamella in spruce wood. IAWA Journal . 1997;18(1):77-88.
124. Gindl W, Gupta HS, Grunwald C. Lignification of spruce tracheid secondary
cell walls related to longitudinal hardness and modulus of elasticity using nano-
indentation. Canadian Journal of Botany . 2002;80(10):1029-33.
125. Gindl W, Schoberl T. The significance of the elastic modulus of wood cell walls
obtained from nanoindentation measurements. Composites Part A: Applied Science
and Manufacturing . 2004;35(11):1345-9.
126. Gindl W, Gupta HS, Schoberl T, Lichtenegger HC, Fratzl P. Mechanical properties
of spruce wood cell walls by nanoindentation. Applied Physics A: Materials Science
and Processing . 2004;79(8):2069-73.
127. Zickler GA, Schoberl T, Paris O. Mechanical properties of pyrolysed wood:
A
nanoindentation study. Philosophical Magazine . 2006;86(10):1373-86.
128. Konnerth J, Gindl W. Mechanical characterisation of wood-adhesive interphase cell
walls by nanoindentation. Holzforschung . 2006;60(4):429-33.
Search WWH ::




Custom Search