Biomedical Engineering Reference
In-Depth Information
71. Y. C. Chen, et al., Functional Human Vascular Network Generated in
Photocrosslinkable Gelatin Methacrylate Hydrogels, Adv. Funct. Mater.,
2012, 22(10), 2027-2039.
72. J. E. Leslie-Barbick, et al., The promotion of microvasculature for-
mation in poly(ethylene glycol) diacrylate hydrogels by an immobilized
VEGF-mimetic peptide, Biomaterials, 2011, 32(25), 5782-5789.
73. L. L. Chiu, et al., Perfusable branching microvessel bed for vascular-
ization of engineered tissues, Proc. Natl. Acad. Sci. U. S. A., 2012,
109(50), E3414-E3423.
74. N. Smart, et al., Thymosin beta4 induces adult epicardial progenitor
mobilization and neovascularization, Nature, 2007, 445(7124), 177-182.
75. S. Kim, et al., Engineering of functional, perfusable 3D microvascular
networks on a chip, Lab Chip, 2013, 13(8), 1489-1500.
76. G. T. Hermanson, Bioconjugate Techniques, Academic Press, New York,
2nd edn, 2008.
77. H. Lee, et al., Mussel-inspired surface chemistry for multifunctional
coatings, Science, 2007, 318(5849), 426-430.
78. Y. Sun, et al., Peptide decorated nano-hydroxyapatite with enhanced
bioactivity and osteogenic differentiation via polydopamine coating,
Colloids Surf., B, 2013, 111, 107-116.
79. S. M. Kang, et al., One-Step Multipurpose Surface Functionalization
by Adhesive Catecholamine, Adv. Funct. Mater., 2012, 22(14), 2949-
2955.
80. R. Fujisawa, et al., Attachment of osteoblastic cells to hydroxyapatite
crystals by a synthetic peptide (Glu7-Pro-Arg-Gly-Asp-Thr) containing
two functional sequences of bone sialoprotein, Matrix Biol., 1997, 16(1),
21-28.
81. D. Itoh, et al., Enhancement of osteogenesis on hydroxyapatite surface
coated with synthetic peptide (EEEEEEEPRGDT) in vitro, J. Biomed.
Mater. Res., 2002, 62(2), 292-298.
82. J. S. Lee, et al., Modular peptide growth factors for substrate-mediated
stem cell differentiation, Angew. Chem., Int. Ed., 2009, 48(34), 6266-
6269.
83. M. Gilbert, et al., Chimeric peptides of statherin and osteopontin that
bind hydroxyapatite and mediate cell adhesion, J. Biol. Chem., 2000,
275(21), 16213-16218.
84. M. D. Roy, et al., Identification of a Highly Specific Hydroxyapatite-
binding Peptide using Phage Display, Adv. Mater., 2008, 20(10), 1830-
1836.
85. S. J. Segvich, H. C. Smith and D. H. Kohn, The adsorption of prefer-
ential binding peptides to apatite-based materials, Biomaterials, 2009,
30(7), 1287-1298.
86. A. Polini, et al., Stable biofunctionalization of hydroxyapatite (HA)
surfaces by HA-binding/osteogenic modular peptides for inducing
osteogenic differentiation of mesenchymal stem cells, Biomaterials
Science, 2014, DOI: 10.1039/C4BM00164H.
d n 3 r 4 n g | 1
.
 
Search WWH ::




Custom Search