Civil Engineering Reference
In-Depth Information
Assume that the plastic hinges for the beams and columns take the following moment versus
plastic rotation relationships:
θ 0 i =0
m i = F o L = 2+ 2 EI = L
m i F o L = 2
m i > F o L = 2 ,
if
then
i =1,…,8
ð2 : 127aÞ
Þ θ 0 i
ð
θ 0 i =0
m i =2 F o L = 5+ EI = ð Þ θ 0 i
m i ≤ 2 F o L = 5
m i >2 F o L = 5 ,
if
then
i =9,…,12
ð2 : 127bÞ
where i =1,…, 8 denotes PHLs #1 to #8 in the columns, and i =9,…, 12 denotes PHLs #9 to
#12 in the beams.
The structure is first assumed to be linear, this gives Θ 00 = 0 . Then using the first matrix equa-
tion of Eq. (2.126) gives
<
=
<
=
2
4
3
5
48 EI = L 3
−24 EI = L 3
−6 EI = L 2
−6 EI = L 2
x 1
x 2
x 3
x 4
x 5
x 6
F o
F o
0
0
0
0
0
0
−24 EI = L 3
24 EI = L 3
6 EI = L 2
6 EI = L 2
6 EI = L 2
6 EI = L 2
6 EI = L 2
0
12 EI = L 2 EI = L
2 EI = L
0
=
6 EI = L 2
0
2 EI = L 12 EI = L
0
2 EI = L
:
;
:
;
−6 EI = L 2
6 EI = L 2
2 EI = L
0
8 EI = L
2 EI = L
−6 EI = L 2
6 EI = L 2
0
2 EI = L
2 EI = L
8 EI = L
ð2 : 128Þ
Solving for the displacements x gives
<
:
=
;
<
:
=
;
x 1
x 2
x 3
x 4
x 5
x 6
2 F o L 3
= 15 EI
= 4 EI
F o L 2
F o L 3
= 10 EI
=
ð2 : 129Þ
F o L 2
= 10 EI
F o L 2
= 20 EI
F o L 2
= 20 EI
Then substituting Eq. (2.129) into the second matrix equation of Eq. (2.126), the moments are
calculated as
<
=
<
=
<
=
<
=
m 1
m 2
m 3
m 4
m 5
m 6
m 7
m 8
m 9
m 10
m 11
m 12
0 : 6
0 : 4
0 : 2
0 : 3
0 : 6
0 : 4
0 : 2
0 : 3
−0 : 6
−0 : 6
−0 : 3
−0 : 3
m y 1
m y 2
m y 3
m y 4
m y 5
m y 6
m y 7
m y 8
m y 9
m y 10
m y 11
m y 12
0 : 5
0 : 5
0 : 5
0 : 5
0 : 5
0 : 5
0 : 5
0 : 5
−0 : 4
−0 : 4
−0 : 4
−0 : 4
= F o L
,
= F o L
ð2 : 130Þ
:
;
:
;
:
;
:
;
Search WWH ::




Custom Search