Civil Engineering Reference
In-Depth Information
The matrix equation used for solving the problem can be obtained, just like the one in
Eq. (2.92), as:
3
2
2
12
EI
L
6
EI
L
6
EI
L
x
5
F
o
2
6
EI
L
4
EI
L
2
EI
L
−θ 1
=
m
ð2 : 103Þ
1
2
6
EI
L
2
EI
L
4
EI
L
−θ 2
m
2
The structure is first assumed to be linear, this gives θ 0 1 = θ 0 2 = 0. Then using the first equation of
Eq. (2.103) gives
12 EI
L 3
x =5 F o
ð2 : 104Þ
Solving for the displacement x in Eq. (2.104) gives
x =5 F o L 3
= 12 EI
ð2 : 105Þ
Then substituting Eq. (2.105) into the second and third equations of Eq. (2.103), the moments
are calculated as
=
5 F o L 3
12 EI
=
6 EI = L 2
6 EI = L 2
m 1
m 2
5 F o L = 2
5 F o L = 2
ð2 : 106Þ
Comparing these moment demands in Eq. (2.106) with the yield moments in Eq. (2.102) shows
that both PHLs #1 and #2 have yielded. This means the original assumption that the structure is
linear is incorrect.
Now assume that both PHLs #1 and #2 have yielded. Based on the moment demands in
Eq. (2.106), it is also assumed that PHL #1 is at the first nonlinear slope and PHL #2 is at
the second nonlinear slope. According to Eq. (2.102), this gives
m 1 =2 F o L + EI = ð Þ θ 0 1 ,
m 2 =3 F o L = 2+ EI = ð Þ θ 0 2
ð2 : 107Þ
Substituting Eq. (2.107) into Eq. (2.103) gives
<
=
<
=
2
4
3
5
12 EI = L 3
6 EI = L 2
6 EI = L 2
x
θ 0 1
θ 0 2
5 F o
2 F o L
3 F o L = 2
6 EI = L 2
=
ð2 : 108Þ
4 EI = L + EI = L
2 EI = L
:
;
:
;
6 EI = L 2
2 EI = L
4 EI = L + EI = L
Solving for Eq. (2.108) gives
<
=
<
=
<
=
2
4
3
5
1
12 EI = L 3
6 EI = L 2
6 EI = L 2
7 F o L 3
x
θ 0 1
θ 0 2
5 F o
2 F o L
3 F o L = 2
= 6 EI
−2 F o L 2
6 EI = L 2
=
5 EI = L 2 EI = L
=
= 3 EI
ð2 : 109Þ
:
;
:
;
:
;
6 EI = L 2
−5 F o L 2
2 EI = L 5 EI = L
= 6 EI
Then substituting Eq. (2.109) into the second and third equations of Eq. (2.103), the moments
are calculated as
Search WWH ::




Custom Search