Civil Engineering Reference
In-Depth Information
0 : 49
1 : 00
= 3105 : 4kg
25000
0
1 M Φ 1 =0 : 49 1 : 00
M 1 = Φ
f
g
0
25000
0 : 49
1 : 00
= 110110 N = m
761030
−330880
T
K 1 = Φ
1 K Φ 1 =0 : 49 1 : 00
f
g
−330880
251470
0 : 49
1 : 00
= 739 : 7 N-s = m
1163 : 7
−525 : 7
T
C 1 = Φ
1 C Φ 1 =0 : 49 1 : 00
f
g
−525 : 7
854 : 1
1 = K 1
M 1 = 110110
2
ω
3105 : 4 =35 : 46
2 ω 1 M 1 = 739 : 7
C 1
ς 1 =
2×5 : 95 × 3105 : 4 =0 : 02
γ 1 = Ml
M 1 =1 : 2
The NPAS were performed and through using the graphic method and Eqs. (8.86) and
(8.87), the yield moment is satisfied by
Ω 1 , y = Γ 1 V 1 , y
M 1
= 1 : 2 × 16000
3105 : 4
=6 : 18N-m
ð8 : 91Þ
Thus, governing equations of the 1st modal system in the FAM is written as
Y 1 ðÞ+0 : 24 Y 1 ðÞ+35 : 46 Y 1 ðÞ= −1 : 2 x g ðÞ+35 : 46 Y 0 1 ðÞ
ð8 : 92Þ
a s , 1 ðÞ=35 : 46 Y 1 ðÞ−35 : 46 θ 0 1 ðÞ
ð8 : 93Þ
Ω 1 ðÞ=35 : 46 Y 1 ðÞ−35 : 46 θ 0 1 ðÞ
ð8 : 94Þ
<
Ω 1 ðÞ≥ 6 : 18
1
35 : 46
35 : 46 Y 1 ðÞ− Ω y , 1
θ 0 1 ðÞ=
ð8 : 95Þ
:
0
Ω 1 ðÞ<6 : 18
Perform the state space formulation presented in Chapter 2.2 on the 1st modal system. Dis-
placement and acceleration time history of each floor, and plastic rotation in the 1st modal coor-
dinate time history is shown in Figure 8.10.
(2) 2nd modal system
According to Eq. (8.49), there are
= 12824 kg
25000
0
−2 : 03
1 : 00
2 M Φ 2 =
M 2 = Φ
f
−2 : 03 1 : 00
g
0
25000
2 : 03
1 : 00
= 4738900N = m
761030
−330880
T
K 2 = Φ
2 K Φ 2 =
−2 : 03 1 : 00
f
g
−330880
251470
Search WWH ::




Custom Search