Civil Engineering Reference
In-Depth Information
2 x ðÞ− ω 0 2
θ 00 ðÞ
a ðÞ= ω
ð8 : 13Þ
Ω ðÞ= ω 0 2 x ðÞ− ω 00 2
θ 00 ðÞ
ð8 : 14Þ
<
<
θ 00 ðÞ=0
Ω ðÞ≤ Ω y
if
,
then
ð8 : 15Þ
Ω ðÞ= 1
θ 00 ðÞ
:
:
m f
ð
Þ
Ω ðÞ> Ω y
Equations (8.12) to (8.15) are the governing equations of the mass-normalized SDOF system
in the FAM. Assume that the mass-normalized SDOF system is subjected to a continuous
increasing horizontal displacement at the roof and there are also totally l steps, as shown in
Eq. (8.2). Structural information at step k + 1 can be predicted by that at step k , thus there is
()
k
k + 1)
(
2
2
( )
k
2
2
x
a
ωω
x
ωω
=
+
ð8 : 16Þ
(
k + 1)
2
2
2
2
′′
()
k
′′
′′
ωω
′′
ωω −∆θ
()
k
θ
in which, a ( k +1) and Ω
( k +1) are the normalized-mass force and moment at step k + 1. Assume
that the incremental plastic rotation at the plastic hinge location (PHL) equals zero as:
00
ðÞ
Δθ
=0
ð8 : 17Þ
Then, the trial normalized-mass force and moment at step k + 1 is expressed by
( )
k
+
2 2 ()
k
2 2 ()
k
a
ωω
x
ωω ∆
x
˜
˜
=
+
ð8 : 18Þ
(
k
+
1)
2
2
( )
k
2
2
ω
ω
′′
ω
ω
′′
0
If the moment at step k + 1exceeds the mass-normalized yield moment Ω y , the final mass-
normalized moment equals the yield moment Ω y and the incremental plastic rotation Δ θ 00 ( k )
at step k + 1 can be solved by
+ Δ x ðÞ
ω 0 2
1
ω 00 2
00 ðÞ =
2 x ðÞ
Δθ
Ω y + ω
ð8 : 19Þ
Substituting Eq. (8.19) back into Eq. (8.16), the final mass-normalized lateral force and
moment at step k + 1 can be expressed by
( )
k
+
2
( )
k
2
2
()
k
2
a
ωω
x
ωω ∆
x
=
+
ð8 : 20Þ
( )
k
+
2
2
2
2
ωω
′′
()
k
ωω ∆θ
′′
()
k
′′
′′
θ
Example 8.1 NSPA for a normalized SDOF system
Consider a mass-normalized SDOF system conversed from Example 3.6. By using Eq. (8.11),
there are
Search WWH ::




Custom Search