Civil Engineering Reference
In-Depth Information
2
2
236 : 4
600
92 : 85
100
PHL#3 :
+
=1 : 02
ð7 : 86bÞ
which indicates that both PHLs #1 and #3 have reached or exceeded yielding at a lateral force of
F o = 75.51 kN that causes a lateral displacement of x 1 = 8.19 cm.
The analysis continues with both PHLs #1 and #3 yielded. The lateral force is now applied up
to F o = 84.17 kN. Using the same stiffness matrix in Eq. (7.75) by assuming no update to the
geometric nonlinearity even when the axial compressive force in the column changes, extract-
ing Rows 1, 2, 3, 4, and 6, while making use of Eq. (7.55a), gives:
<
=
<
=
2
4
3
5
1379 : 9 1479 : 9 1479 : 9 1479 : 9 1479 : 9
1479 : 9 7892 : 2
x 1
x 2
x 3
θ 0 1
θ 0 3
84 : 17
0
0
96 : 21
91 : 91
2000
2027 : 30
1479 : 9
2000
7892 : 2
0
2027 : 3
=
ð7 : 87Þ
:
;
:
;
1479 : 9 2027 : 3
4692 : 20
0
1479 : 9
0
2027 : 3
0
4692 : 2
where
q
1− 163 : 6 = 600
2
m yc , 1 = 100 ×
ð
Þ
=96 : 21 kNm
ð7 : 88aÞ
q
1− 236 : 4 = 600
2
m yc , 3 = 100 ×
ð
Þ
=91 : 91 kNm
ð7 : 88bÞ
Solving for the displacements at the DOFs and plastic rotations in Eq. (7.87) gives
<
=
<
=
x 1
x 2
x 3
θ 0 1
θ 0 3
0 : 1119
−0 : 0151
−0 : 0148
−0 : 0083
−0 : 0093
=
ð7 : 89Þ
:
;
:
;
Then, substituting Eq. (7.89) back into the last six equations of Eq. (7.75) gives the moments
<
=
<
=
2
4
3
5
<
=
m 1
m 2
m 3
m 4
m 5
m 6
1479 : 9 2027 : 3
0
3892 : 20
102 : 81
90 : 00
99 : 37
89 : 26
−90 : 00
−89 : 26
0 : 1119
−0 : 0151
−0 : 0148
−0 : 0083
−0 : 0093
1479 : 9 3892 : 2
0
2027 : 30
1479 : 9
0
2027 : 3
0
3892 : 2
=
=
ð7 : 90Þ
1479 : 9
0
3892 : 2
0
2027 : 3
:
;
:
;
:
;
0
4000
2000
0
0
0
2000
4000
0
0
and the column axial force are updated as
P 1 = P + m 5 + m 6
L b
= 200 + 90 : 00 89 : 26
4
= 155 : 2kN
ð7 : 91aÞ
Search WWH ::




Custom Search