Civil Engineering Reference
In-Depth Information
P
P
E , I b , L b
x 3
#5
#6
F 0
x 1
3
#2
x 2
#4
1
2
E
,
I c ,
L c
E
,
I c ,
L c
#3
PHL #1
Figure 7.6 One-story one-bay moment-resisting frame.
PHLs ( q = 6). For simplicity, let I c = I b = I and L c = L b = L . Assume that only a lateral force of F o
is applied at the horizontal degree of freedom x 1 , this gives F 1 = F o and F 2 = F 3 =0.
Since the axial compressive force in Member 1 (denote as P 1 ) can be different from that of
Member 2 (denote as P 2 ) due to overturning caused the lateral applied load F o , the resulting
stability coefficients can be different as well. The axial compressive force in Member 3 is
assumed to be negligible (i.e. P 3 0) due to the presence of a slab, even though it is not shown
in the figure. Therefore, let
s
s
P 1
EI
P 2
EI
λ 1 =
× L ,
λ 2 =
× L
ð7 : 51Þ
It then follows that the stiffness matrices of the FAM for this one-story frame become similar to
those in Eq. (2.54), i.e.
2
3
s 0 1 EI = L 3 + s 0 2 EI = L 3
s 1 EI = L 2
s 2 EI = L 2
x 1
x 2
x 3
4
5
K =
s 1 EI = L 2
ð7 : 52aÞ
s 1 EI = L +4 EI = L
2 EI = L
s 2 EI = L 2
2 EI = L
s 2 EI = L +4 EI = L
2
2
2
2
s
EI
L
s
EI
L
s
EI
L
s
EI
L
0
0
x
1
1
2
2
1
K
=
s
c
EI
L
s
EI
L
0
0
4
EI
L
2
EI
L
x
ð7 : 52bÞ
1
1
1
2
0
0
s
c
EI
L
s
EI
L
2
EI
L
4
EI
L
x
2
2
2
3
s
EI
L
s
c
EI
L
0
0
0
0
θ
1
1
1
1
s
c
EI
L
s
EI
L
0
0
0
0
θ
1
1
1
2
0
0
s
EI
L
s
c
EI
L
0
0
θ
2
2
2
3
K
=
ð7 : 52cÞ
0
0
s
c
EI
L
s
EI
L
0
0
θ
2
2
2
4
0
0
0
0
4
EI
L
2
EI
L
θ
5
0
0
0
0
2
EI
L
4
EI
L
θ
6
Search WWH ::




Custom Search