Civil Engineering Reference
In-Depth Information
2
4
3
5
4 EI c =
L c 2 EI c =
L c
0
0
0
0
0
2 EI c = L c 4 EI c = L c
0
0
0
0
0
0
0
4 EI c =
L c 2 EI c =
L c
0
0
0
K 00 =
0
0
2 EI c = L c 4 EI c = L c
0
0
0
ð5 : 87Þ
0
0
0
0
4 EI b = L b 2 EI b = L b
0
0
0
0
0
2 EI b =
L b 4 EI b =
L b
0
0
0
0
0
0
0
EA b = l b
According to the static condensation by Eq. (2.149), the condensed stiffness matrix is written as
K = K dd K dr K −1
rr K rd =24 EI c = L c + EA b cos 2
β = l b
−1
4 EI c = L c +4 EI b = L b
6 EI c = L c
6 EI c = L c
2 EI b = L b
6 EI c = L c
6 EI c = L c
ð5 : 88Þ
4 EI c = L c +4 EI b = L b
2 EI b = L b
Thus, the governing equation is written as:
Ft
()
xt
()
′′
mt
()
−θ
()
t
1
1
′′
mt
()
−θ
()
t
2
2
KK
KK
′′
mt
()
−θ
()
t
3
3
=
ð5 : 89Þ
T
′′
′′
mt
()
−θ
()
t
4
4
′′
mt
()
−θ
()
t
5
5
′′
mt
()
−θ
()
t
6
6
′′
Pt
()
−δ
()
t
Substituting the first equation in Eq. (5.89) in (5.84) gives
2
3
θ 0 1 ðÞ
θ 0 2 ðÞ
θ 0 3 ðÞ
θ 0 4 ðÞ
θ 0 5 ðÞ
θ 0 6 ðÞ
δ 00 ðÞ
4
5
mx ðÞ+ c _ x ðÞ+ K x ðÞ= − mx g ðÞ+ K 0
ð5 : 90Þ
Using the state space numerical integration method of analysis, Eq. (5.84) is expressed as
z ðÞ= Az ðÞ+ H a g ðÞ+ F s ðÞ
ð5 : 91Þ
where
,
, H =
0
1
x ðÞ
x 0 ðÞ
0
1
z ðÞ=
A =
K = m
c = m
Search WWH ::




Custom Search