Civil Engineering Reference
In-Depth Information
#84
#79
W27x94
W27x94
W27x94
#81
#83
x 6
#12
#4 7
W36x135
W36x135
W36x135
#73
#74
#75
#76
#77
#78
x 5
#10
#9
#4 5
W36x150
W36x150
W36x150
#67
#69
#71
x 4
#4 3
W36x210
W36x210
W36x210
#62
#63
#64
#65
#66
#61
x 3
Mode
Period (s)
Damping
#6
1
1.000
2%
#5
#4 1
W36x210
W36x210
W36x210
2
0.362
2%
#55
#57
#58
#59
#60
#56
x 2
#4
3
0.207
2%
#3
#3 9
W36x210
W36x210
W36x210
4
0.148
2%
#49
#51
#53
x 1
5
0.114
2%
PHL#1
#25
#37
#13
6
0.093
2%
7.62 m
7.62 m
7.62 m
Figure 3.20 Six-story moment-resisting steel frame.
Example 3.9 Six-story Moment-Resisting Steel Frame
Consider the 6-story moment-resisting steel frame as shown in Figure 3.20. Assuming the
members are axially rigid, this gives a total of 30 DOFs (i.e. n = 30) and 84 PHLs (i.e. q = 84).
No mass moment of inertia is assumed at the rotational joints, and therefore static condensation
is used to eliminate the 24 rotational DOFs (i.e. r = 24), resulting in only 6 translational DOFs
for the frame (i.e. d = 6). The stiffness matrices are then formulated based on the standard
properties of each member. The 30 × 30 K matrix, 30 × 84 K 0 matrix, and 84 × 84 K 00 matrix
are first constructed by assembling the individual stiffness matrices of each member. Then
static condensation using Eq. (3.135) is applied to obtain the 6 × 6 K matrix, 6×84 K 0 matrix,
and 84 × 84 K 00 matrix. As a numerical illustration, the resulting K matrix is of the form
2
4
3
5
464300
−252200
39180
−3715
345 : 8
−29 : 4
305 : 1
−252200
445700
−266500
38160
−3550
39180
−266500
451000
−252800
36180
−3106
K =
kN = m
ð3 : 156Þ
−3715
38160
−252800
384500
−190900
24440
345 : 8
−3550
36180
−190900
282900
−125000
−29 : 4
305 : 1
−3106
24440
−125000
103300
Search WWH ::




Custom Search