Chemistry Reference
In-Depth Information
spreading and diagnostics. Other than the obvious biological influences on such
motion, it can be imagined that the network topology plays a role in how far a swim-
mer can traverse through such networks. Such a situation can be mimicked by cre-
ating a complex enough, yet quantifiable, network of microfluidic channels through
which the droplet squirmers can traverse as shown in Fig. 7.19 . As we discussed
in this chapter, the complex interplay of the effects of confinement, hydrodynamic
interactions and network topology could lead to truly interesting behaviour.
References
1. K. Bhattacharya, T. Vicsek, Collective decision making in cohesive flocks. New J. Phys. 12 ,
093019 (2010)
2. V. Guttal, I.D. Couzin, Social interactions, information use, and the evolution of collective
migration. Proc. Natl. Acad. Sci. 107 (37), 16172-16177 (2010)
3. P. Romanczuk, I.D. Couzin, L. Schimansky-Geier, Collective motion due to individual escape
and pursuit response. Phys. Rev. Lett. 102 , 010602 (2009)
4. H.P. Zhang, A. Be'er, E. Florin, H.L. Swinney, Collective motion and density fluctuations in
bacterial colonies. Proc. Natl. Acad. Sci. 107 (31), 13626-13630 (2010)
5. V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments.
Nature 467 (7311), 73-77 (2010)
6. J.P. Hernandez-Ortiz, C.G. Stoltz, M.D. Graham, Transport and collective dynamics in sus-
pensions of confined swimming particles. Phys. Rev. Lett. 95 , 204501 (2005)
7. T. Ishikawa, T.J. Pedley, Coherent structures in monolayers of swimming particles. Phys. Rev.
Lett. 100 , 088103 (2008)
8. F. Ginelli, F. Peruani, M. Bär, H. Chaté, Large-scale collective properties of self-propelled rods.
Phys. Rev. Lett. 104 , 184502 (2010)
9. A. Najafi, R. Golestanian, Simple swimmer at low reynolds number: three linked spheres. Phys.
Rev. E 69 , 062901 (2004)
10. T. Ishikawa, M.P. Simmonds, T.J. Pedley, Hydrodynamic interaction of two swimming model
micro-organisms. J. Fluid Mech. 568 , 119-160 (2006)
11. E. Lauga, D. Bartolo, Nomany-scallop theorem: collective locomotion of reciprocal swimmers.
Phys. Rev. E 78 (3), 030901 (2008)
12. C.M. Pooley, G.P. Alexander, J.M. Yeomans, Hydrodynamic interaction between two swim-
mers at low reynolds number. Phys. Rev. Lett. 99 , 228103 (2007)
13. R. A. Simha , S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspen-
sions of self-propelled particles. Phys. Rev. Lett. 89 , (2002)
14. J. Toner, Y. Tu, Long-Range order in a two-dimensional dynamical XY model: how birds fly
together. Phys. Rev. Lett. 75 , 4326 (1995)
15. I.S. Aranson, L.S. Tsimring, Pattern formation of microtubules andmotors: inelastic interaction
of polar rods. Phys. Rev. E 71 , 050901 (2005)
16. J. Toner, Y. Tu, S. Ramaswamy, Hydrodynamics and phases of flocks. Ann. Phys. 318 , 170-244
(2005)
17. A. Baskaran, M.C. Marchetti, Statistical mechanics and hydrodynamics of bacterial suspen-
sions. Proc. Natl. Acad. Sci. 106 (37), 15567-15572 (2009)
18. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a
system of self-driven particles. Phys. Rev. Lett. 75 (6), 1226 (1995)
19. C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, J. O. Kessler, Self-concentration
and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 , (2004)
20. K. Drescher et al., Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev.
Lett. 102 , 1-4 (2009)
 
Search WWH ::




Custom Search