Civil Engineering Reference
In-Depth Information
Proof. We consider three cases.
Case 1. Let
u X + λ M δ 1 t | λ | c , where δ> 0 will be chosen later. Then
A(u, λ ; u, λ) = a(u, u) + t 2 c(λ, λ)
1
1
2 t 2
2
c
2 t 2
2
c
| λ |
+
| λ |
1
1
2 δ 2
{ ( u X + λ M ) 2
+ t 2
2
c
4 δ 2
2 .
| λ |
}≥
||| (u, λ) |||
Dividing through by
||| (u, λ) |||
,wehave
1
A(u, λ ; u, λ)
||| (u, λ) |||
A(u, λ ; v, µ)
||| (v, µ) |||
4 δ 2
||| (u, λ) ||| ≤
sup
(v,µ)
.
β
u X + λ M 1 t | λ | c and
Case 2. Let
u X
a λ M . By the inf-sup
2
condition (4.8),
b(v, λ)
v X =
A(u, λ ; v, 0 ) a(u, v)
v X
β λ M
sup
v
sup
v
A(u, λ ; v, µ)
||| (v, µ) |||
sup
(v,µ)
+ a u X
A(u, λ ; v, µ)
||| (v, µ) |||
1
2 β λ M .
sup
(v,µ)
+
Now we can estimate
λ M , and in view of the case distinction
u X and t | λ | c as
well, by the first term on the right-hand side.
Case 3.
β
1 t | λ | c
a λ M . Then
δ ||| (u, λ) |||≤ u X , where δ depends only on α, β and δ . By hypothesis (4.25),
Let
u X + λ M
and
u X
2
αδ ||| (u, λ) ||| ≤ α u X
0 ,µ) + t 2 c(λ, µ)
µ M + t | µ | c
a(u, u)
u X +
A(u, λ ;
su µ
A(u, λ ; u, λ)
u X
A(u, λ ;
0 ,µ)
||| ( 0 ,µ) |||
+
su µ
+ t | λ | c
1
δ +
1 sup
(v,µ)
A(u, λ
v, µ)
||| (v, µ) |||
;
+ t | λ | c .
αβ
1
With δ
we have t | λ | c
2 α u X , and the second term in the sum can
4
a +
2 β
be absorbed by a factor of 2.
This establishes the assertion in all cases.
 
Search WWH ::




Custom Search