Civil Engineering Reference
In-Depth Information
in the sum. Thus, t he val ues of the integrals do not change if we subtract the
integral mean value w h (e) on each edge e :
L u (w h ) =
ν u(w h w h (e))ds.
e
T
e
∂T
It follows from the definition of w h (e) that e (w h w h (e))ds =
0. The values of
the integrals also do not change if we subtract an arbitrary constant function from
ν u on each edge e . This can be ν Iu in particular, and we get
L u (w h ) =
ν (u I u)(w h w h (e))ds.
e
T
e
∂T
It follows from the Cauchy-Schwarz inequality that
2 ds
2 ds 1 / 2
| L u (w h ) |≤
e |∇ (u Iu) |
e | w h w h (e) |
.
( 1 . 8 )
e ∂T
T
We now derive bounds for the integrals in (1.8). By the trace theorem and the
Bramble-Hilbert lemma,
2 ds c (v Iv)
2
2
2 ,T ref c | v |
2
∂T ref |∇ (v Iv) |
1 ,T ref c v Iv
2 ,T ref ,
for v H 2 (T ref ) . Using the transformation formulas from Ch. II, §6, we see that
2 ds ch | v |
2
2 ,T
∂T |∇ (v Iv) |
( 1 . 9 )
for T T h . Similarly, for each edge e of ∂T ref ,
2 ds
2
1 ,T ref
c |
2
1 ,T ref
e |
w h
w h (e)
|
c
w h
w h |
for all w h P
1 .
Here the Bramble-Hilbert lemma applies because the left-hand side vanishes for
constant functions. For e T T h , the transformation theorems yield
2 ds ch | w h |
2
1 ,T
1
e | w h w h (e) |
for all w h M
, 0 .
( 1 . 10 )
We now insert the estimates (1.9) and (1.10) into (1.8), and use the Cauchy-
Schwarz inequality for Euclidean scalar products:
| L u (w h ) |≤
3 ch | u |
| w h |
2 ,T
1 ,T
T
c h
T
1 ,T 1 / 2
2 ,T
T
2
2
|
u
|
|
w h |
= c h | u | 2 , w h h .
( 1 . 11 )
 
Search WWH ::




Custom Search