Biomedical Engineering Reference
In-Depth Information
87. Chou CH, Hwang SY, Chang FC. Population study of Miscanthus floridulus (Labill.) Warb.
I. Variation of peroxidase and esterase in 27 populations in Taiwan. Bot Bull Acad Sin.
1987;28:247-81.
88. Chou CH, Chiang TY, Chiang YC. Towards an integrative biology research: a case study on
adaptive and evolutionary trends of Miscanthus populations in Taiwan. Weed Biol Manage.
2001;1:81-8.
89. Lafferty J, Lelley T. Cytogenetic studies of different Miscanthus species with potential for
agricultural use. Plant Breed. 1994;113:246-9.
90. Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB. Genotypic variation in cold
tolerance influences the yield of Miscanthus . Ann Appl Biol. 2006;149:337-45.
91. Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown
J. Characterization of flowering time diversity in Miscanthus species. Glob Chang Biol
Bioenergy. 2011;3:387-400.
92. Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I, Clifton-Brown J. Flowering
induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day
response, whilst delayed flowering under long days increases biomass accumulation. J Exp
Bot. 2013;64:541-52.
93. Kaack K, Schwarz K-U. Morphological and mechanical properties of Miscanthus in relation
to harvesting, lodging, and growth conditions. Ind Crop Prod. 2001;14:145-54.
94. Clayton WD, Harman KT, Williamson H. GrassBase - the online world grass flora. KEW:
Royal Botanic Gardens. http://www.kew.org/data/grasses-db.html (2010). Last accessed
7 Mar 2013.
95. Hirayoshi I, Nishikawa K, Kubono M. Cyto-genetical studies on forage plants (V) Polyploidy
and distribution in Miscanthus sect. Kariyasua Ohwi. Res Bull Fac Agric Gifu Univ.
1956;7:9-14 (in Japanese).
96. Christian DG, Yates NE, Riche AB. Establishing Miscanthus sinensis from seed using
conventional sowing methods. Ind Crop Prod. 2005;21:109-11.
97. Jakob K, Zhou F, Paterson AH. Genetic improvement of C 4 grasses as cellulosic biofuel
feedstocks. In Vitro Cell Dev Biol. 2009;45:291-305.
98. Hisano H, Nandakumar R, Wang ZY. Genetic modification of lignin biosynthesis for
improved biofuel production. In Vitro Cell Dev Biol. 2009;45:306-13.
99. Li X, Weng J-K, Chapple C. Improvement of biomass through lignin modification. Plant
J. 2008;54:569-81.
100. Iwata H, Kamijo T, Tsumura Y. Genetic structure of Miscanthus sinensis ssp. condensatus
(Poaceae) on Miyake Island: implications for revegetation of volcanically devastated sites.
Ecol Res. 2005;20:233-8.
101. Xi Q, Je˙owski S. Plant resources of Triarrhena and Miscanthus species in China and its
meaning for Europe. Plant Breed Seed Sci. 2004;49:63-77.
102. Yan J, Chen W, Luo F, Ma H, Meng A, Li X, Zhu M, Li S, Zhou H, Zhu W, Han B, Ge S, Li J,
Sang T. Variability and adaptability of Miscanthus species evaluated for energy crop domes-
tication. Glob Chang Biol Bioenergy. 2012;4:49-60.
103. Chou CH, Huang S, Chen SH, Kuoh CS, Chiang TY, Chiang YC. Ecology and evolution of
Miscanthus of Taiwan. Natl Sci Coun Mon. 1999;27:1158-69 (in Chinese).
104. Anzoua KG, Kajihara Y, Toma Y, Iizuka N, Yamada T. Potentiality of four cool season
grasses and Miscanthus sinensis for feedstock in the cool regions of Japan. J Jpn Inst Energy.
2011;90:59-65.
105. Clifton-Brown JC, Lewandowski I. Overwintering problems of newly established Miscanthus
plantations can be overcome by identifying genotypes with improved rhizome cold tolerance.
New Phytol. 2000;148:287-94.
106. Demirbas A. Relationships between lignin contents and heating values of biomass. Energ
Convers Manage. 2001;42:183-8.
Search WWH ::




Custom Search