Biomedical Engineering Reference
In-Depth Information
49. Nishikawa O. Atlas: environmental change in modern Japan. Tokyo: Asakura publishing Co.,
Ltd; 1995. p. 1-187. (in Japanese).
50. Matumura M, Iwata E. Using practice of wild grass - mainly about Miscanthus sinensis ,
Study of susuki. Gifu: Gifu Univ; 1976. p. 117-121 (in Japanese).
51. Otaki N. Aso grassland for a thousand years. Burning stopped, grassland endangered. Environ
Res Q. 1999;114:31-6.
52. Toma Y, Clifton-Brown J, Sugiyama S, Nakaboh M, Hatano R, Fern´ndez FG, Stewart JR,
Nishiwaki A, Yamada T. Soil carbon stocks and carbon sequestration rates in semi-natural
grassland in Aso region, Kumamoto, southern Japan. Glob Chang Biol 2013;19:1676-87.
53. Toma Y, Armstrong K, Stewart JR, Yamada T, Nishiwaki A, Bollero G, Fern ´ ndez
FG. Carbon sequestration in soil in a semi-natural Miscanthus sinensis grassland and Cryp-
tomeria japonica forest plantation in Aso, Kumamoto, Japan. Glob Chang Biol Bioenergy.
2012;4:566-75.
54. Schwarz H. Miscanthus sinensis 'Giganteus' production on several sites in Austria. Biomass
Bioenergy. 1993;5:413-9.
55. Jones MB, Walsh M, editors. Miscanthus for energy and fibre. London: James & James;
2001. p. 1-192
56. Lewandowski I, Schmidt U. Nitrogen, energy and land use efficiencies of miscanthus, reed
canary grass and triticale as determined by the boundary line approach. Agr Ecosyst Environ.
2006;112:335-46.
57. Khanna M, Dhungana B, Clifton-Brown J. Costs of producing miscanthus and switchgrass for
bioenergy in Illinois. Biomass Bioenergy. 2008;32:482-93.
58. Villamil MB, Silvis AH, Bollero GA. Potential miscanthus' adoption in Illinois: information
needs and preferred information channels. Biomass Bioenergy. 2008;32:1338-48.
59. Naidu SL, Moose SP, AL-Shoaibi AK, Raines CA, Long SP. Cold tolerance of C 4 photo-
synthesis in Miscanthus
giganteus : adaptation in amounts and sequence of C 4 photosyn-
thetic enzymes. Plant Physiol. 2003;132:1688-97.
60. Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones
MB, Riche AB, Schwarz U, Tayebi K, Teixeira F. Environment and harvest time affects the
combustion qualities of Miscanthus genotypes. Agron J. 2003;95:1274-80.
61. Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB. Comparative responses to water
stress in stay-green, rapid and slow senescing genotypes of the biomass crop, Miscanthus .
New Phytol. 2002;154:335-45.
62. Dohleman FG, Long SP. More productive than maize in the Midwest: how does Miscanthus
do it? Plant Physiol. 2009;150:2104-15.
63. Anderson E, Arundale R, Maughan M, Oladeinde A, Wycislo A, Voigt T. Growth and
agronomy of Miscanthus
giganteus for biomass production. Biofuels. 2011;2:167-83.
64. Linde-Laursen I. Cytogenetic analysis of Miscanthus 'Giganteus', an interspecific hybrid.
Hereditas. 1993;119:297-300.
65. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennet MD, Renvoize SA. The use of
DNA sequencing (ITS and trnl-F ), AFLP, and fluorescent in situ hybridization to study
allopolyploid Miscanthus (Poaceae). Am J Bot. 2002;89:279-86.
66. Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK,
Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME. Genomic and small RNA sequencing
of Miscanthus giganteus shows the utility of sorghum as a reference genome sequence for
Andropogoneae grasses. Genome Biol. 2010;11:R12.
67. Hodkinson TR, Renvoize SA. Nomenclature of Miscanthus
giganteus . Kew Bull.
2001;56:757-8.
68. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennet MD, Renvoize
SA. Characterization of a genetic resources collection for Miscanthus (Saccharinae,
Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot. 2002;89:627-36.
Search WWH ::




Custom Search