Biomedical Engineering Reference
In-Depth Information
36. I˜ iquez-Covarrubias G, Lange SE, Rowell RM. Utilization of byproducts from the tequila
industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production.
Bioresour Technol. 2001;77:25-32.
37. Hernandez-Salas JM, Villa-Ramirez MS, Veloz-Rendon JS, Rivera-Hernandez KN, Gonzalez-
Cesar RA, Plascencia-Espinosa MA, Trejo-Estrada SR. Comparative hydrolysis and fermen-
tation of sugarcane and agave bagasse. Bioresour Technol. 2009;100:1238-45.
38. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang XM, Seo JH, Glass NL, Cate JHD, Jin
YS. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose
fermentation. Proc Natl Acad Sci U S A. 2011;108:504-9.
39. Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. Simultaneous co-fermentation of mixed sugars: a
promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012;30:274-82.
40. Avila-Fernandez A, Rendon-Poujol X, Olvera C, Gonzalez F, Capella S, Pe˜a-Alvarez A,
Lopez-Mungula A. Enzymatic hydrolysis of fructans in the tequila production process. J Agric
Food Chem. 2009;57:5578-85.
41. Arrizon J, Gschaedler A. Increasing fermentation efficiency at high sugar concentrations by
supplementing an additional source of nitrogen during the exponential phase of the tequila
fermentation process. Can J Microbiol. 2002;48:965-70.
42. Guti ´ rrez-Lom ´ li M, Torres-Guzm ´ n JC, Gonz ´ lez-Hern ´ ndez GA, Cira-Ch ´ vez LA, Pelayo-
Ortiz C, Ram´rez-C´rdova J. Overexpression of ADH1 and HXT1 genes in the yeast Saccha-
romyces cerevisiae improves the fermentative efficiency during tequila elaboration. Antonie
Van Leeuwenhoek. 2008;93:363-71.
43. Jin YS, Cate JHD. Model-guided strain improvement: simultaneous hydrolysis and
co-fermentation of cellulosic sugars. Biotechnol J. 2012;7:328-9.
44. Cortez L, Freire WJ, Rosillo-Calle F. Biodigestion of vinasse in Brazil.
Int Sugar
J. 1998;100:403-13.
45. Mendez-Acosta HO, Snell-Castro R, Alcaraz-Gonzalez V, Gonzalez-Alvarez V, Pelayo-Ortiz
C. Anaerobic treatment of tequila vinasses in a CSTR-type digester. Biodegradation.
2010;21:357-63.
46. Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural
crop wastes: a review in context to second generation of biofuel production. Renew Sust
Energy Rev. 2012;16:1462-76.
47. De Souza ZM, Prado RD, Paixao ACS, Cesarin LG. Harvest systems and residue management
of sugarcane. Pesqui Odontol Bras. 2005;40:271-8.
48. Espinoza-Escalante FM, Pelayo-Ortiz C, Navarro-Corona J, Gonzalez-Garcia Y, Bories A,
Gutierrez-Pulido H. Anaerobic digestion of the vinasses from the fermentation of Agave
tequilana Weber to tequila: the effect of pH, temperature and hydraulic retention time on
the production of hydrogen and methane. Biomass Bioenergy. 2009;33:14-20.
49. Cede˜o CM, Alvarez-Jacobs J. Production of tequila from agave: historical influences and
contemporary processes. In: Jacques K, Lyons TP, Kelsall DR, editors. The alcohol textbook.
3rd ed. Nottingham: Nottingham University Press; 1999. p. 225-42.
50. Vieira MC, Heinze T, Antonio-Cruz R, Mendoza-Martinez AM. Cellulose derivatives from
cellulosic material
isolated from Agave lechuguilla and Agave fourcroydes . Cellulose.
2002;9:203-12.
51. McDougall GJ, Morrison IM, Stewart D, Weyers JDB, Hillman JR. Plant fibres: botany,
chemistry, and processing for industrial use. J Sci Food Agric. 1993;62:1-20.
52. Mylsamy K, Rajendran I. Investigation on physio-chemical and mechanical properties of raw
and alkali-treated Agave americana fibre. J Reinf Plast Compos. 2010;29(19):2925-35. doi: 10.
1177/0731684410362817 .
53. Garc´a-Reyes BR, Rangel-Mendez JR. Contribution of agro-waste material main components
(hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution.
J Chem Technol Biotechnol. 2009;84:1533-8.
Search WWH ::




Custom Search