Biomedical Engineering Reference
In-Depth Information
58. Crane J, Kovach D, Gardener C, Walters C. Triacylglycerol phase and 'intermediate' seed
storage physiology: a study of Cuphea carthagenesis . Planta. 2006;223:1081-9.
59. Crane J, Miller AL, William J, Roeckel V, Walters C. Triacylglycerols determine the unusual
storage physiology of cuphea seed. Planta. 2003;217:699-708.
60. Volk GM, Crane J, Caspersen AM, Hill LM, Gardener C, Walters C. Massive cellular
disruption occurs during early imbibition of Cuphea seeds containing crystallized
triacylglycerols. Planta. 2006;224:1415-26.
61. McGinnis L. Warming up to cuphea: seeds get special treatment after cold storage. Agric Res
USDA. 2006;54(7):11.
62. Berti MT, Johnson BL. Physiological changes during seed development of cuphea. Field Crops
Res. 2008;106(2):163-70.
63. Berti MT, Johnson BL. Growth and development of cuphea. Ind Crops Prod. 2008;27(3):265-
71.
64. Kaliangile DF. Seed maturation in Cuphea . J Seed Technol. 1988;12:107-13.
65. Gesch RW, Forcella F. Differential sensitivity to temperature of cuphea vegetative and
reproductive growth. Ind Crops Prod. 2007;25:305-9.
66. Cernac A, Andre C, Hoffmann-Benning S, Benning C. WRI1 is required for seed germination
and seedling establishment. Plant Physiol. 2006;141:745-57.
67. Graham S. Revision of cuphea section Heterodon (Lythraceae). Syst Bot Monogr. 1988;20:1-
168.
68. Hirsinger F, Knowles PF. Morphological and agronomic description of selected Cuphea
germplasm. Econ Bot. 1984;38:439-51.
69. Hirsinger F. Agronomic potential and seed composition of Cuphea, an annual crop for lauric
and capric seed oils. J Am Oil Chem Soc. 1985;62:76-80.
70. Kim K-I, Gesch RW, Cermak SC, Phippen WB, Berti MT, Johnson BL, Marek L. Cuphea
growth, yield, and oil characteristics as influenced by climate and soil environments across the
upper Midwest USA. Ind Crops Prod. 2011;33(1):99-107.
71. Acevedo E, Silva P, Silva H. Wheat growth and physiology. In: Curtis BC, et al., editors. Bread
wheat improvement and production. FAO plant production and protection series. N30
(Online). Rome: FAO; 2002. Available at www.fao.org/docrep/006/Y4011E/y4011e06.htm .
Accessed 4 Dec 2012.
72. Thorne JH. Phloem unloading of C and N assimilates in developing seeds. Annu Rev Plant
Physiol. 1985;36:317-43.
73. Sharratt BS, Gesch RW. Water use and root length density of Cuphea spp. Influenced by row
spacing and sowing date. Agron J. 2004;96:1475-80.
74. Gesch RW, Sharratt BS, Kim K-I. Yield and water use response of cuphea to irrigation in the
northern Corn Belt. Crop Sci. 2009;49(5):1867-75.
75. Berglund DR. Sunflower production. Fargo: North Dakota State Univ. Exp. Stn., Bull. EB-25;
1995.
76. Grey D. Water use efficiency in canola in Victoria. In: Proceedings of the Australian Agron-
omy Conference, 9th; 1998 July 20-23. Wagga Wagga: Australian Society of Agron; 1998.
77. Gesch RW, Forcella F, Olness A. Cuphea growers' guide. Morris: USDA-ARS North Central
Soil Conservation Research Lab; 2011.
78. Gulya TJ, Gesch RW, Bradley CA, Del Rio LE, Johnson BL. First report of Sclerotinia
sclerotiorum infection on Cuphea. Plant Dis. 2006;90:1554.
79. Behle RW, Isbell TA. Evaluation of Cuphea as a rotation crop for control of Western corn root
worm (Coleoptera: Chrysomelidae). J Econ Entomol. 2005;98:1984-91.
80. Graham SA. Gall makers on flowers of Cuphea (Lythraceae). Biotropica. 1995;27:461-7.
81. Berti MT, Johnson BL, Manthey LK. Cuphea seed physiological maturity. Ind Crops Prod.
2007;25(2):190-201.
82. Cermak SC, Isbell TA, Isbell JE, Ackerman GG, Lowery BA, Deppe AB. Batch drying of
cuphea seeds. Ind Crops Prod. 2005;21:353-9.
Search WWH ::




Custom Search