Biomedical Engineering Reference
In-Depth Information
117. Obert B, Bartoˇov´ Z, Pre ˇ ov´ A. Dihaploid production in flax by anther and ovary culture. J
Nat Fibres. 2004;1(3):1-14.
118. Obert B, Bartoˇov´ Z, Pre ˇ ov´ A. Dihaploid production in fl ax by anther and ovary cultures. J
Nat Fibers. 2005;1(3):1-14.
119. Bartoˇov´ Z, Obert B, Tak´ˇ T, Kormu ˇ ´k A, Pre ˇ ov´ A. Using enzyme polymorphism to
identify the gametic origin of flax regenerants. Acta Biol Cracov Bot. 2005;47(1):73-178.
120. Bartoˇov´ Z, Masar S, Pre ˇ ov´ A. Flax plant regenerated from unpollinated ovules cultured in
ovary segments. Acta Hortic. 2006;725(2):869-71.
121. Poliakov AV, Loshakova NI, Krylova TV, Rutkowska-Krause I, Trouve JP. Perspectives of
haploids use for flax improvement ( Linum usitatissimum L.). In: KozlowskiR, editor. Report
of flax Genetic resources workshop, 2nd meeting of European cooperative network on flax.
Brno; 8-10 Nov 1994. p. 38-44.
122. Sun H. Preliminary report on anther culture of flax. Ko' Hsueh Tung Pao Exue Tong Bao.
1979;24:948-50.
123. Sun H, Fu V. Induction of pollen plants in flax ( Linum usitatissimum L.) and preliminary
observations on performance of their progenies. Acta Genet Sinica. 1981;8:369-74.
124. van Treuren R, van Soest LJM, van Hintum TJL. Marker -assisted rationalisation of genetic
resource collections: a case study in flax using AFLPs. Theor Appl Genet. 2004;103:144-52.
125. Hepburn AG, Clarke LE, Blumdy KS, White J. Nopaline Ti-plasmid, pTiT37, T-DNA
insertions into flax genome. Mol Appl Genet. 1983;2:211-24.
126. Jordan MC, McHughen A. Glyphosate tolerant flax plants from Agrobacterium mediated
gene transfer. Plant Cell Rep. 1988;7:281-4.
127. Jordan MC, McHughen A. Transformed callus does not necessarily regenerate transformed
shoots. Plant Cell Rep. 1988;7:285-7.
128. McHughen A, Jordan M, Feist G. A preculture period prior to Agrobacterium inoculation
increases production of transgenic plants. J Plant Physiol. 1989;135:245-8.
129. Dong JZ, McHughen A. An improved procedure for production of transgenic flax plants
using Agrobacterium tumefaciens . Plant Sci. 1993;88:61-71.
130. Wijayanto T, McHughen A. Genetic transformation of Linum by particle bombardment. In
Vitro Cell Dev Biol Plant. 1999;35:456-65.
131. Bretagne-Sagnard B, Chupeau Y. Selection of transgenic flax plants is facilitated by specti-
nomycin. Transgenic Res. 1996;5:131-7.
132. Lamblin F, Aim´ A, Hano C, Roussy I, Domon JM, Van Droogenbroeck B, Lain´ E. The use
of the phosphomannose isomerase gene as alternative selectable marker for Agrobacterium -
mediated transformation of flax ( Linum usitatissimum ). Plant Cell Rep. 2007;26:765-72.
133. Hraˇka M, Rakousk´ S, ˇ urn V. Green fluorescent protein as a vital marker for
non-destructive detection of transformation events in transgenic plants. Plant Cell Tiss
Organ Cult. 2006;86:303-18.
134. Lorenc-Kukula K, Wr ´ bel-Kwiatkowska M, Starzycki M, Szopa J. Engineering flax with
increased flavonoid content and thus Fusarium resistance. Phys Mol Plant Path.
2007;70:38-48.
135. Wr ´ bel M, Zebrowski J, Szopa J. Polyhydroxybutyrate synthesis in transgenic flax.
J Biotechnol. 2004;107:41-54.
136. Vrbov ´ M, Hor ´ cek J, Sm ´ kal P, Griga M. Flax ( Linum usitatissimum L.) transformation with
heavy metal binding protein genes. In: Sehnal F, Drobn´k J, editors. White book of geneti-
cally modified crops. EU regulations and research experience from the Czech Republic.
Cesk´ Budejovice: Biology Centre AS CR; 2009. p. 57.
137. Bjelkov´ M, Genˇurov´ V, Griga M. Accumulation of cadmium by flax and linseed varieties
in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind
Crops Prod. 2011;33:761-74.
138. Griga M, Bjelkov´ M. Flax ( Linum usitatissimum L.) and hemp ( Cannabis sativa L.) as fibre
crops for phytoextraction of heavy metals: biological, agro-technological and economical
Search WWH ::




Custom Search