Biomedical Engineering Reference
In-Depth Information
80. Jasdanwala RT, Singh YD, Chinoy JJ. Auxin metabolism in developing cotton hairs. J Exp
Bot. 1977;28:1111-6.
81. Naithani SC, Rao NR, Singh YD. Physiological and biochemical changes associated with
cotton fibre development. Physiol Plant. 1982;54:225-9.
82. Berlin JD. The outer epidermis of the cottonseed. In: Mauney JR, Stewart JMD, editors.
Cotton physiology. Memphis: The Cotton Foundation; 1986. p. 375-414.
83. Wang Y, Shu H, Chen B, McGriffen Jr ME, Zhang W, Xu N, Zhou Z. The rate of cellulose
increase is highly related to cotton fibre strength and is significantly determined by its genetic
background and boll period temperature. J Plant Growth Regul. 2009;57:203-9.
84. Haigler CH, Rao NR, Roberts EM, Huang J, Upchurch DR, Trolinder NL. Cultivated ovules
as models
for cotton fiber development under
low temperatures. Plant Physiol.
2007;95:88-96.
85. Machado A, Wu Y, Yang Y, Llewellyn D, Dennis ES. The MYB transcription factor
GhMYB25 regulates early fiber and trichome development. Plant J. 2009;59:52-62.
86. Walford S, Wu Y, Llewellyn DJ, Dennis ES. GhMYB25-like: a key factor in early cotton
fiber development. Plant J. 2011;5:785-97.
87. Walford SA, Wu YR, Llewellyn DJ, Dennis ES. Epidermal cell differentiation in cotton
mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J. 2012;71:464-78.
88. Graves AD, Stewart MJ. Chronology of the differentiation of cotton ( Gossypium hirsutum L.)
fiber cells. Planta. 1988;175:254-8.
89. Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen
RD. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell
Physiol. 2005;46:1384-91.
90. Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, et al. Spatiotemporal manipulation of
auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat
Biotechnol. 2011;29(5):453-8.
91. Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, et al. Xyloglucan
endotransglycosylase-hydrolase genes in cotton and their role in fiber elongation. Planta.
2010;232:1191-205.
92. Ruan YL, Chourey PS. A fiberless seed mutation in cotton is associated with lack of fiber cell
initiation in ovule epidermis and alterations in sucrose synthase expression and carbon
partitioning in developing seeds. Plant Physiol. 1998;118:399-406.
93. Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS. The delayed initiation and slow elonga-
tion of fuzz-like short fiber cells in relation to altered patterns of sucrose synthase expression
and plasmodesmata gating in a lintless mutant of cotton. J Exp Bot. 2005;56:977-84.
94. Jiang Y, Guo W, Zhu H, Ruan YL, Zhang T. Overexpression of GhSusA1 increases plant
biomass and improves cotton fiber yield and quality. Plant Biotechnol J. 2012;10:301-12.
95. Xu SM, Brill E, Llewellyn DJ, Furbank RT, Ruan YL. Overexpression of a potato sucrose
synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber
production. Mol Plant. 2012;5(2):430-41.
96. Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY. Gene expression and metabolite profiles of
cotton fibre during cell elongation and secondary cell wall
synthesis. Cell Res.
2007;17:422-34.
97. Li X, Wang XD, Zhao X, Dutt Y. Improvement of cotton fiber quality by transforming the
acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell
Rep. 2004;22:691-67.
98. Stewart JM, Oosterhuis D, Heitholt JJ, Mauney JR. Genetic engineering applications in crop
improvement. In: Stewart JM, Oosterhuis D, Heitholt JJ, Mauney JR, editors. Physiology of
cotton. New York: Springer; 2010. p. 394-560.
99. John ME, Keller G. Metabolic pathway engineering in cotton: biosynthesis of polyhydrox-
ybutyrate in fiber cells. Proc Natl Acad Sci U S A. 1996;93:1268-77.
100. Wrobel M, Zebrowski J, Szopa J. Polyhydroxybutyrate synthesis in transgenic flax. J
Biotechnol. 2004;107:41-54.
Search WWH ::




Custom Search