Biomedical Engineering Reference
In-Depth Information
46. K¨ tting O, Kossmann J, Zeeman SC, Lloyd JR. Regulation of starch metabolism: the age of
enlightenment? Curr Opin Plant Biol. 2010;13(3):320-8.
47. P´rez S, Bertoft E. The molecular structures of starch components and their contribution to the
architecture of starch granules: a comprehensive review. Starch
St¨rke. 2010;62(8):389-420.
48. Sonnewald U, Kossmann J. Starches - from current models to genetic engineering. Plant
Biotechnol J. 2013;11(2):223-32.
49. Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant
Biol. 2012;15(3):282-92.
50. Holder DG, Glover DV, Shannon JC. Interaction of shrunken-2 with five other carbohydrate
genes in corn endosperm. Crop Sci. 1974;14(5):643-6.
51. Sanders EB, Thompson DB, Boyer CD. Thermal behavior during gelatinization and amylo-
pectin fine structure for selected maize genotypes as expressed in four inbred lines. Cereal
Chem. 1990;67(6):594-602.
52. Wang YJ, White P, Pollak L, Jane J. Characterization of starch structures of 17 maize
endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem.
1993;70:171-9.
53. Shi YC, Seib PA. Fine structure of maize starches from four wx -containing genotypes of the
W64A inbred line in relation to gelatinization and retrogradation. Carbohydr Polym. 1995;26
(2):141-7.
54. Klucinec JD, Thompson DB. Fractionation of high-amylose maize starches by differential
alcohol precipitation and chromatography of the fractions. Cereal Chem. 1998;75(6):887-96.
55. Liu Q, Thompson DB. Retrogradation of du wx and su2 wx maize starches after different
gelatinization heat treatments. Cereal Chem. 1998;75(6):868-74.
56. Yao Y. WIPO patent no. 2013019977. Geneva: World Intellectual Property Organization;
2013.
57. Huang L, Yao Y. Particulate structure of phytoglycogen nanoparticles probed using amyloglu-
cosidase. Carbohydr Polym. 2011;83(4):1665-71.
58. Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G. Increasing maize seed weight by
enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize
plants. Plant Cell Tiss Org Cult. 2007;88(1):83-92.
59. Hannah LC, Futch B, Bing J, Shaw JR, Boehlein S, Stewart JD,
Greene T. A shrunken-2
transgene increases maize yield by acting in maternal tissues to increase the frequency of seed
development. Plant Cell Online. 2012; 24(6): 2352-363.
60. Li J, Baroja-Fern´ndez E, Bahaji A, Mu˜oz FJ, Ovecka M, Montero M,
...
Pozueta-Romero
J. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in
maize ( Zea mays L.) seed endosperms. Plant Cell Physiol. 2013;54(2): 282-94.
61. Gao M, Wanat J, Stinard PS, James MG, Myers AM. Characterization of dull1, a maize gene
coding for a novel starch synthase. Plant Cell Online. 1998;10(3):399-412.
62. Campbell MR, White PJ, Pollak LM. Dosage effect at the sugary-2 locus on maize starch
structure and function. Cereal Chem. 1994;71(5):464-8.
63. Shogren RL. Starch polymer as advanced material for industrial and consumer products. In:
Ahmed J, Tiwari BK, Imam SH, Rao MA, editors. Starch-based polymeric materials and
nanocomposites: chemistry, processing, and applications. Boca Raton: CRC Press; 2012.
p. 287-99.
64. Nahampun HN, Lee CJ, Jane JL, Wang K. Ectopic expression of bacterial amylopullulanase
enhances bioethanol production from maize grain. Plant Cell Rep. 2013;32(9):1393-405.
65. Benchimol LL, Souza Jr CLD, Souza APD. Microsatellite-assisted backcross selection in
maize. Genet Mol Biol. 2005;28(4):789-97.
66. Jiang L, Yu X, Qi X, Yu Q, Deng S, Bai B, Li N, et al. Multigene engineering of starch
biosynthesis in maize endosperm increases the total starch content and the proportion of
amylose. Transgenic Res. 2013;22(6):1133-42.
67. Schmitz TG, Schmitz A, Moss CB. The economic impact of StarLink corn. Agribusiness.
2005;21(3):391-407.
...
Search WWH ::




Custom Search