Biomedical Engineering Reference
In-Depth Information
70. Bellin D, Schulz B, Soerensen TR, Salamini F, Schneider K. Transcript profiles at different
growth stages and tap-root zones identify correlated developmental and metabolic pathways
of sugar beet. J Exp Botany. 2007;58:699-715.
71. Koga N, Takahashi H, Okazaki K, Kajiyama T, Kobayashi S. Potential agronomic options for
energy-efficient sugar beet-based bioethanol production in northern Japan. GCB Bioenergy.
2009;1:220-9.
72. Dohm JC, Lange C, Holtgrawe D, Rosleff Sorensen T, Borchardt D, Schulz B, Lehrach H,
Weisshaar B, Himmelbauer H. Palaeohexaploid ancestry for Caryophyllales inferred from
extensive gene-based physical and genetic mapping of the sugar beet genome ( Beta vulgaris ).
Plant J. 2012;70:528-40.
73. McGrath JM, Drou N, Waite D, Swarbreck D, Mutasa-Gottgens E, Barnes S, Townsend
B. The 'C869' sugar beet genome: a draft assembly. Int Plant Anim Genome XXI.
2013;2013:W735.
74. W¨rschum T, Maurer HP, Kraft T, Janssen G, Nilsson C, Reif JC. Genome-wide association
mapping of agronomic traits in sugar beet. Theor Appl Genet. 2011;123:1121-31.
75. Mutasa-G ¨ ttgens ES, Joshi A, Holmes HF, Hedden P, G ¨ ttgens B. A new RNASeq-based
reference transcriptome for sugar beet and its application in transcriptome-scale analysis of
vernalization and gibberellin responses. BMC Genomics. 2012;13:99.
76. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen J, Nilsson O. An
antagonistic pair of FT homologs mediates the control of flowering time in sugar beet.
Science. 2010;330:1397-400.
77. de los Reyes BG, Myers SJ, McGrath JM. Differential induction of glyoxylate cycle enzymes
by stress as a marker for seedling vigor in sugar beet ( Beta vulgaris ). Mol Genet Genomics.
2003;269:692-8.
78. Starke P, Hoffmann C. Sugarbeet as a substrate for biogas production. Zuckerindustrie.
2011;136:242-50.
79. Campbell LG. Processing quality. In: Biancardi E, Campbell L, Skaracis GN, de Biaggi M,
editors. Genetics and breeding of sugarbeet. New Hampshire: Science Publishers; 2005.
p. 126-9.
80. Carter JN. Sucrose production as affected by root yield and sucrose concentration of
sugarbeet. J Am Soc Sugar Beet Technol. 1987;24:14-31.
81. Bergen P. Seasonal patterns of sucrose accumulation and weight increase in sugar beets. J Am
Soc Sugar Beet Technol. 1967;14:538-45.
82. Milford GFJ. The growth and development of the storage root of sugar beet. Ann Appl Biol.
1973;75:427-38.
83. Wyse R. Parameters controlling sucrose content and yield of sugarbeet roots. J Am Soc Sugar
Beet Technol. 1979;20:368-85.
84. Werpy T, Peterson G. Top value added chemicals from biomass. Volume I: results of
screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy
(DOE), National Renewable Energy Laboratory; 2004. doi: 10.2172/15008859 .
85. M ¨ ck G, Hoffmann CM, M ¨ rl ¨ nder B. Nitrogen compounds in organs of two sugar beet
genotypes ( Beta vulgaris L.) during the season. Field Crops Res. 2007;102:210-8.
86. Hoffmann CM, M ¨ rl ¨ nder B. Composition of harmful nitrogen in sugar beet ( Beta vulgaris
L.) - amino acids, betaine, nitrate - as affected by genotype and environment. Eur J Agron.
2005;22:255-65.
87. Lammens TM, Franssen MCR, Scott EL, Sanders JPM. Availability of protein-derived amino
acids as feedstock for
the production of bio-based chemicals. Biomass Bioenergy.
2012;44:168-81.
88. Renard CMGC, Jarvis MC. A cross-polarization, magic-angle-spinning, C-13-nuclear-mag-
netic-resonance study of polysaccharides
in sugar beet cell walls. Plant Physiol.
1999;119:1315-22.
Search WWH ::




Custom Search