Environmental Engineering Reference
In-Depth Information
cult to perform in reality, it
makes sense to use similar approaches in the design of a thermodynamic cycle for
magnetic refrigeration. The reason for this is that the low-
Despite the fact that the real Stirling cycle is dif
eld iso
(de)magnetization processes may follow the regenerative process with lower irre-
versible losses than the case with the Ericsson or Brayton regenerative cycles,
which operate between two constant magnetic
eld and high-
elds. This is due to the similar
temperature
entropy variation in both iso-magnetization processes.
-
References
1. Tesla N (1890) Pyromagneto-electric generator. US Patent 428.057
2. Edison TA (1892) Pyromagnetic generator. US Patent 476.983
3. Brillouin L, Iskenderian HP (1948) Thermomagnetic generator. Federal Telecommunication
Laboratories, Nutley, pp 300
313
4. Van der Voort E (1969) Ideal magnetocaloric conversion. Appl Sci Res 20:98
-
114
5. Chilowsky C (1952) Thermomagnetic generator and refrigerator. US Patent 2.619.603
6. GB 674284 (1952) Technical assets. Improvements in and relating to thermomagnetic
generators and refrigerators
7. Elliott JF (1959) Thermomagnetic generator. J Appl Phys 11(30):1774
-
1777
8. Resler EL Jr, Rosensweig RE (1964) Magnetocaloric power. AIAA J 8(2):1418
-
1422
9. Resler EL Jr, Rosensweig RE (1967) Regenerative thermomagnetic power. J Eng Power
89:399
-
406
10. Kirol LD, Mills JI (1984) Thermomagnetic generator. In: Proceedings of the 19th intersociety
energy conversion engineering conference, vol 3, pp 1361
-
1368
11. Kirol LD, Mills JI (1984) Numerical analysis of thermomagnetic generators. J Appl Phys
56:824 - 828
12. Salomon D (1989) Thermomagnetic mechanical heat engines. J Appl Phys 65:3687 - 3693
13. Pecharsky VK, Gschneidner KA Jr (1997) Effect of alloying on the giant magnetocaloric effect
of Gd 5 (Si 2 Ge 2 ). J Magn Magn Mater 167:179 - 184
14. Palmy C (2007) A thermo-magnetic wheel. Europhys News 38(3):32 - 34
15. Palmy C, Egolf PW (2007) Levitation and acceleration of a thermo-magnetic wheel. In:
Proceedings of the 2nd international conference on magnetic refrigeration of the international
institute refrigeration, pp 299
-
307
16. Diebold M, Kitanovski A, Vuarnoz D et al (2007) Force, torque and energy of machines with
porous magnetisable wheels. In: 2nd Workshop on magnetostrictive materials and magnetic
refrigeration, pp 15
-
16
17. Egolf PW, Kitanovski A, Diebold M et al (2009) Magnetic power conversion with full or
porous wheel heat exchangers. J Magn Magn Mater 321(7):758
-
762
18. Kitanovski A, Diebold M, Vuarnoz D et al (2008) Applications of magnetic
-
power
nal report. SFOE
19. Gama S (2010) Tesla type thermomagnetic motor powered by water heated using solar energy.
In: Presentation at 4th international IIR conference on magnetic refrigeration, PR China Inner
Mongolia, 2010
20. Br ü ck E, Dung NH, Ou ZQ et al (2011) Magnetocaloric Materials not only for cooling
applications. In: Presentation at delft days on magnetocalorics. Delft University (NL)
21. Vuarnoz D, Kitanovski A, Gonin C et al (2012) Quantitative feasibility study of
magnetocaloric energy conversion utilizing industrial waste heat. Appl Energy 100:229 - 237
22. Christiaanse T, Br ü ck E (2014) Proof-of-concept
production
and its assessment. A feasibility study
static
thermomagnetic generator
experimental device. Metall Mater Trans 1E:36 - 40
Search WWH ::




Custom Search