Environmental Engineering Reference
In-Depth Information
11. Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl
Therm Eng 23(8):913 - 935
12. B ö ttner H, Nurnus J, Gavrikov A et al (2004) New thermoelectric components using
microsystem technologies. J Microelectromech S 13(3):414 - 420
13. Tritt TM (2002) Thermoelectric materials: principles, structure, properties, and applications.
Encyclopedia of Materials: Science and Technology, pp 1
11
-
14. B
ttner H (2005) Micropelt miniaturized thermoelectric devices: small size, high cooling
power densities, short response time. In: ICT 2005. 24th International conference on
thermoelectrics, IEEE, pp 1
ö
8
-
15. B
ttner H, Nurnus J, Braun M et al (2004) Micopelt: state of the art. Road map and
applications. Micropelt GmbH
16. B
ö
ttner H, Nurnus J, Schubert A et al (2007) New high density micro structured
thermogenerators for stand alone sensor systems. Micropelt GmbH
17. Jeffrey Snyder G, Ursell TS (2003) Thermoelectric ef ciency and compatibility. Phys Rev
Lett 91:148301
18. Wee D (2011) Analysis of thermoelectric energy conversion ef ciency with linear and
nonlinear temperature dependence in material properties. Energy Convers Manage
52:3383 - 3390
19. Bean JA (2010) Thermionic refrigeration. Lectures on advanced semiconductor devices.
Department of Electrical Engineering, University of Notre Dame, Notre Dame
20. Nolas GS, Sharp J, Goldsmid HJ (2001) Thermoelectrics: basic principles and new materials
developments, 1st edn. Springer, Berlin
21. Hatsopoulos GN, Kaye J (1958) Measured thermal electron engine. J Appl Phys
29:1124
ö
1125
22. Yeom J, Shannon MA (2008) Micro-coolers. Elsevier, New York
23. Lough BC, Lee SP, Lewis RA et al (2001) Numerical calculation of thermionic cooling
efciency in a double barrier semiconductor heterstructure. Physica E 11:287
-
291
24. Shakouri A, Bowers JE (1997) Heterostructure integrated thermionic coolers. Appl Phys Lett
71:1234
-
1236
25. Mahan GD, Woods LM (1998) Multilayer
-
thermionic refrigeration. Phys Rev Lett
4019
26. Shakouri A, Zhang Y (2005) On-chip solid-state cooling for integrated circuits using thin-
lm microrefrigerators. IEEE Trans Comp Packag Technol 28:65
80:4016
-
69
27. Zeng G, Fan X, LaBounty C et al (2004) Cooling power density of SiGe/Si superlattice micro
refrigerators. Mater Res Soc Symp Proc 793:S2.2.1 - 2.2.7
28. Zhang Y, Shakouri A, Zeng G (2004) High-power-density spot cooling using bulk
thermoelectrics. Appl Phys Lett 85:2977 - 2979
29. Hishinuma Y, Geballe TH, Moyzhes BY et al (2002) Vacuum thermionic refrigeration with a
semiconductor heterojunction structure. Appl Phys Lett 81(22):4242 - 4244
30. Zhang Y, Christofferson J, Shakouri A et al (2006) On-chip high speed localized cooling
using superlattice microrefrigerators. IEEE Trans Comp Packag Technol 29:395
-
401
31. Xu YB, Thompson SM (ed) (2006) Spintronic materials and technology. Taylor & Francis,
Boca Raton, p 423
32. Pearton SJ, Abernathy CR, Norton DP et al (2003) Advances in wide bandgap materials for
semiconductors. Mater Sci Eng R 40:137
-
168
33. Wolf SA, Awschalom DD, Buhrman RA et al (2001) Spintronics: a spin-based electronics
vision for the future. Science 294:1488
-
1495
34. Baibich MN, Broto JM, Fert A et al (1988) Giant magnetoresistance of (001)Fe/(001)Cr
magnetic superlattices. Phys Rev Lett 61(21):2472
-
2475
-
35. Binasch G, Gr
ü
nberg P, Saurenbach F et al (1989) Enhanced magnetoresistance in layered
magnetic
structures with antiferromagnetic
interlayer
exchange. Phys Rev B 39
(7):4828 - 4830
36. Medvedkin GA, Ishibashi T, Nishi T et al (2000) Jpn J Appl Phys 39:L949
37. Medvedkin GA, Hirose K, Ishibashi T et al (2002) J Cryst Growth 236:609
Search WWH ::




Custom Search