Environmental Engineering Reference
In-Depth Information
35. Xia ZR, Ye XM, Lin GX et al (2006) Optimization of the performance characteristics in an
irreversible magnetic Ericsson refrigeration cycle. Phys B 381:246 - 255
36. He JZ, Wu X, Deng XF (2007) Performance characteristics of an irreversible magnetic
Brayton refrigeration cycle. Int J Refrig 31(1):138 - 144
37. Kitanovski A, Egolf PW (2009) Application of magnetic refrigeration and its assessment.
J Magn Magn Mater 321(7):777
781
38. DeGregoria A (1991) Modeling the active magnetic regenerator. Adv Cryog Eng 37:867
-
873
39. Smailli A, Chahine R (1998) Thermodynamic investigations of optimum active magnetic
regenerators. Cryogenics 38:247
-
252
40. Shir F, Della Torre E, Bennett LH et al (2004) Modeling of magnetization and
demagnetization in magnetic regenerative refrigeration. IEEE Trans Magn 40(4):2098
-
2100
41. Engelbrecht K (2008) Numerical Model of an Active Magnetic Regenerator Refrigerator
with Experimental Validation. PhD thesis, University of Wisconsin, Madison, USA
-
42.
Š
A (2010) Dimensionless numerical model for simulation of active
magnetic regenerator refrigerator. Int J Refrig 33(6):1061
arlah A, Poredo
š
1067
43. Taglia co G, Scarpa F, Canepa F (2010) A dynamic 1-d model for a reciprocating active
magnetic regenerator: influence of the main working parameters. Int J Refrig 33(2):286 - 293
44. Risser M, Vasile C, Engel T et al (2010) Numerical simulation of magnetocaloric system
behavior for an industrial application. Int J Refrig 33:973 - 981
45. Vuarnoz D, Kawanami T (2012) Numerical analysis of a reciprocating active magnetic
regenerators made of gadolinium wires. Appl Therm Eng 37:388 - 395
46. Burdyny T, Rowe A (2013) Simplied modeling of active magnetic regenerators. Int J Refrig
36(3):932
-
940
47. Nikkola P, Mahmed C, Balli M et al (2014) 1D model of an active magnetic regenerator. Int J
Refrig 37:43
-
50
48. Chiba Y, Smaili A, Mahmed C et al (2014) Thermal investigations of an experimental active
magnetic regenerative refrigerator operating near room temperature. Int J Refrig 37:36
-
42
49. Petersen TF, Pryds N, Smith A et al (2008) Two-dimensional mathematical model of a
reciprocating room temperature active magnetic regenerator. Int J Refrig 31:432
-
443
50. Nielsen KK, Bahl CRH, Smith A et al (2009) Detailed numerical modeling of a linear
parallel-plate active magnetic regenerator. Int J Refrig 32:1478
-
1486
51. Liu M, Yu B (2011) Numerical investigations on internal temperature distribution and
refrigeration performance of reciprocating active magnetic regenerator of room temperature
magnetic refrigeration. Int J Refrig 34(3):617 - 627
52. Oliveira PA, Trevizioli PV, Barbosa JR Jr et al (2012) A 2D hybrid model of the fluid flow
and heat transfer in a reciprocating active magnetic regenerator. Int J Refrig 35:98 - 114
53. Li J, Numazawa T, Nakagome H et al (2011) Numerical modeling on a reciprocating active
magnetic regenerator refrigeration in room temperature. Cryogenics 51:347 - 352
54. Š arlah A, Kitanovski A, Poredo š A et al (2006) Static and rotating active magnetic
regenerators with porous heat exchangers for magnetic cooling. Int J Refrig 29:1332 - 1339
55. Anzelius A (1926)
-
Ü
ber Erw
ä
rmung vermittels durchstr
ö
mender Medien. Z Angew Math
294
56. Nusselt W (1928) Der Beharrungszustand in Winderhitzen. Z des Ver Deut Ing 7:1052
57. Hausen H (1929)
Mech 6:291
-
Ü
ber Die Theorie Von Warmeaustauches in Regeneratoren. Z Angew Math
Und Mech 9:173
58. Coppage JE, London AL (1953) The periodic-
fl
ow regenerator-summary of design theory.
787
59. Hill A, Willmott AJ (1987) A robust method for regenerative heat exchanger calculations. Int
J Heat Mass Transf 30:241
Trans ASME 75:779
-
249
60. Foumney EA, Heggs PJ (1991) Heat exchange engineering. In: Design of heat exchangers,
vol 1. Ellis Horwood, New York
61. Dragutinovic GD, Baclic BS (1998) Operation of counterflow regenerators. WIT Press,
Computational Mechanics Publications, London
-
Search WWH ::




Custom Search