Biomedical Engineering Reference
In-Depth Information
100.
Kitiyanan, B., Alvarez, W. E., Harwell, J. H., and Resasco, D. E. (2000) Controlled
production of single-wall carbon nanotubes by catalytic decomposition of CO
on bimetallic Co-Mo catalysts, Chem. Phys. Lett. , 317 , 497-503.
101.
Green, A. A., and Hersam, M. C. (2007) Ultracentrifugation of single-walled
nanotubes, Mater. Today , 10 (12), 59-60.
102.
Naumov, A.V., Kuznetsov, O. A., Harutyunyan, A. R., Green, A. A., Hersam, M.
C., Resasco, D. E., Nikolaev, P. N., and Weisman, R. B. (2009) Quantifying the
semiconducting fraction in single-walled carbon nanotube samples through
comparative atomic force and photoluminescence microscopies, Nano Lett. ,
9 (9), 3203-3208.
103.
Ma, Y.-Z., Graham, M. W., Fleming, G. R., Green, A. A., and Hersam, M. C. (2008)
Ultrafast exciton dephasing in semiconducting single-walled carbon nanotubes,
Phys. Rev. Lett. , 101 (21), 217402/1-217402/4.
104.
Qian, H., Araujo, P. T., Georgi, C., Gokus, T., Hartmann, N., Green, A. A., Jorio,
A., Hersam, M. C., Novotny, L., and Hartschuh, A. (2008) Visualizing the local
optical response of semiconducting carbon nanotubes to DNA-wrapping, Nano
Lett. , 8 (9), 2706-2711.
105.
Qian, H., Georgi, C., Anderson, N., Green, A. A., Hersam, M. C., Novotny, L., and
Hartschuh, A. (2008) Exciton energy transfer in pairs of single-walled carbon
nanotubes, Nano Lett. , 8 (5), 1363-1367.
106.
Harutyunyan, H., Gokus, T., Green, A. A., Hersam, M. C., Allegrini, M., and
Hartschuh, A. (2009) Defect-induced photoluminescence from dark excitonic
states in individual single-walled carbon nanotubes, Nano Lett. , 9 (5),
2010-2014.
107.
Alvarez, N. T., Pint, C. L., Hauge, R. H., and Tour, J. M. (2009) Abrasion as a
catalyst deposition technique for carbon nanotube growth, J. Am. Chem. Soc. ,
131 (41), 15041-15048.
108.
Pint, C. L., Nicholas, N., Duque, J. G., Parra-Vasquez, A. N. G., Pasquali, M., and
Hauge, R. (2009) Recycling ultrathin catalyst layers for multiple single-walled
carbon nanotube array regrowth cycles and selectivity in catalyst activation,
Chem. Mater. , 21 (8), 1550-1556.
109.
Kim, M. J., Haroz, E., Wang, Y., Shan, H., Nicholas, N., Kittrell, C., Moore, V. C., Jung,
Y., Luzzi, D., Wheeler, R., BensonTolle, T., Fan, H., Da, S., Hwang, W.-F., Wainerdi,
T. J., Schmidt, H., Hauge, R. H., and Smalley, R. E. (2007) Nanoscopically lat
open-ended single-walled carbon nanotube substrates for continued growth,
Nano Lett. , 7 (1), 15-21.
110.
Pint, C. L., Pheasant, S. T., Pasquali, M., Coulter, K. E., Schmidt, H. K., and Hauge,
R. H. (2008) Synthesis of high aspect-ratio carbon nanotube “lying carpets”
from nanostructured lake substrates, Nano Lett. , 8 (7), 1879-1883.
111.
Ding, F., Harutyunyan, A. R., and Yakobson, B. I. (2009) Dislocation theory
of chirality-controlled nanotube growth. Proc. Natl. Acad. Sci. USA , 106 (8),
2506-2509.
Search WWH ::




Custom Search