Cryptography Reference
In-Depth Information
A
An Exemplary Quasi-Monoidic Srivastava Code
For our example, let p =3 ,s =1 ,m =4 ,d =3 ,t =3.Weusetheextensionfield
F 3 4
3 of size N = p d = 27, with set of
generators b 1 =(1 , 0 , 0), b 2 =(0 , 1 , 0), b 3 =(0 , 0 , 1).
We randomly select the images of the
F 3 [ u ] /
u 4 +2 u 3 +2
, the group A =
Z
=
F 3 -linearly dependent
h (0) 1 = u 3 + u 2 + u +2 ,
h ( b 1 ) 1 = u 2 +2 u +1 ,
h ( b 2 ) 1 = u 3 +2 u 2 + u +1 ,
h ( b 3 ) 1 = u 2 +1 .
We also select a shift ω = u 3 +2 u + 2, compute β =(2 u 3 + u 2 +1 ,u 3 + u 2 +
u, u 2 +2 u +2), and γ =( γ 0 ,...,γ 8 )with
γ 0 =( u 3 +2 u +2 , 1 , 2 u 3 + u ) ,
γ 1 =( u 3 + u 2 +2 u +1 ,u 2 , 2 u 3 + u 2 + u +2) ,
γ 2 =( u 3 +2 u 2 +2 u, 2 u 2 +2 , 2 u 3 +2 u 2 + u +1) ,
=( u +1 , 2 u 3 +2 u, u 3 +2) ,
3
γ 4 =( u 2 + u, 2 u 3 + u 2 +2 u +2 ,u 3 + u 2 +1) ,
γ 5 =(2 u 2 + u +2 , 2 u 3 +2 u 2 +2 u +1 ,u 3 +2 u 2 ) ,
γ 6 =(2 u 3 ,u 3 + u +2 , 2 u +1) ,
γ 7 =(2 u 3 + u 2 +2 ,u 3 + u 2 + u +1 ,u 2 +2 u ) ,
γ 8 =(2 u 3 +2 u 2 +1 ,u 3 +2 u 2 + u, 2 u 2 +2 u +2) .
where the group indices are ordered 0 = (0 , 0 , 0) ,a 1 =(1 , 0 , 0) ,a 2 =(2 , 0 , 0) ,...,
a p d 1 =(2 , 2 , 2). Our blocksize is b =gcd( t, N ) = 3 and we randomly choose the
permutation τ = 012345678
567834012 .Weuseonlythefirst =6blockschosenbythe
permutation, i.e., blocks 5 , 6 , 7 , 8 , 3 , 4, resulting in a code of length n = b = 18.
We continue and select the support permutations
π 0 =0 ,
1 =2 ,
2 =1 ,
3 =2 ,
4 =0 ,
5 =1 .
corresponding to the monoidic permutation matrices M ( χ a π i ), where
100
010
001
001
100
010
010
001
100
,
,
.
M ( χ a 0 )=
M ( χ a 1 )=
M ( χ a 2 )=
We compute
γ 0 =(2 u 2 + u +2 , 2 u 3 +2 u 2 +2 u +1 ,u 3 +2 u 2 ) ,
γ 1 =( u 3 + u +2 , 2 u +1 , 2 u 3 ) ,
γ 2 =( u 2 +2 u, 2 u 3 + u 2 +2 ,u 3 + u 2 + u +1) ,
γ 3 =( u 3 +2 u 2 + u, 2 u 2 +2 u +2 , 2 u 3 +2 u 2 +1) ,
γ 4 =( u +1 , 2 u 3 +2 u, u 3 +2) ,
γ 5 =( u 3 + u 2 +1 ,u 2 + u, 2 u 3 + u 2 +2 u +2) .
Afterwards, we have to set the scaling factors σ and to compute the layered
parity-check matrix from the sequence β and
γ . Since we would like to end up
with a Goppa code (to be able to use the superior error-correction capabilities
of “equal magnitude” decoding described in Appendix B), we will set all σ i =1
and the Cauchy layered exponent to be r =1.
 
Search WWH ::




Custom Search