Cryptography Reference
In-Depth Information
Table 1. Encryption quasi-monoidic codes
level
pm n
k
t key(bits) syndrome(bits)
80
2
12 3840
768
256
9216
3072
80
3
8
2430
486
243
6163
3082
80
5
5
1000
375
125
4354
1452
80 167 3
668
167
167
3700
3700
112
2
12 2944 1408 128
16896
1536
112
3
8
2673
729
243
9244
3082
112 11
5
1089
484
121
8372
2093
112 241 3
964
241
241
5722
5722
128
2
12 3200 1664 128
19968
1536
128
3
9
3159
972
243
13866
3467
128
5
5
5000
625
625
10159
10159
128 373 3
1492
373
373
9560
9560
192
2
14 6144 2560 256
35840
3584
192
3
10 4131 1701 243
26961
3852
192 29
6
5887
841
841
24514
24514
192 547 4
2735
547
547
19901
19901
256
2
15 11264 3584 512
53760
7680
256
7
9
5145 2058 343
51998
8667
256 37
6
9583 1369 1369
42791
42791
256 907 4
4535
907
907
35645
35645
Table 2. Encryption quasi-monoidic codes yielding short syndromes
level
pm n
k
t key(bits) syndrome(bits)
80
2 11 1792 1088 64
11968
704
80
7
5
735
490
49
6879
688
80 41 3
451
328
41
5272
659
128 2 12 3200 1664 128
19968
1536
128 3
9 2106 1377 81
19643
1156
128 7
6 1813 1519 49
25587
826
192 2 14 5376 3584 128
50176
1792
192 3 11 4536 3645 81
63550
1413
monoidic sequence. This may cause some entries in the sequence to be 0, so we
cannot invert them in the final step of the algorithm and just leave them at
0, since no legal entry can have that value. Now, after selecting the submatrix
in QuasiMonoidic (Fig. 3), i.e., after line 7, we need to check that all matrix
coecients are non-zero and restart if there are any. This is unlikely since the
submatrix is usually small.
The whole relaxation allows us to work with smaller extension fields
F Q ,
F Q , where before we needed
2 N . So the codes we produce will be denser and thus more suited for the CFS
signature scheme.
because we now need only t + n distinct elements in
 
Search WWH ::




Custom Search