Cryptography Reference
In-Depth Information
Therefore the probability of success P succ is lower bounded by
P succ
prob ( W 1 = w 1 ,W 2 = w 2 )
(21)
w 1 ,w 2 : w 1 + w 2 n
= x I 2 |
prob x ∈ C sec :
W 1 = w 1 ,W 2 = w 2
| x I 1 |
= p
|
On the other hand, by using Lemma 3 with the set
X de = x
= x I 2 |
= p
=( x j ) j∈J :
| x I 1 |
which is of size w p w p 2 n−w 1 −w 2 ,weobtain
prob x ∈ C sec :
= x I 2 |
W 1 = w 1 ,W 2 = w 2
| x I 1 |
= p
|
f ( x ) .
(22)
with
w p w p 2 n−w 1 −w 2
2 n−k
= w 1
p
w 2
p
2 k−w 1 −w 2
x de =
The first quantity is clearly equal to
prob ( W 1 = w 1 ,W 2 = w 2 )= w 1 n−w 1
N−n
( K + k + l ) / 2
N−n− ( K + k + l ) / 2+ w 1
( K + k + l ) / 2
w 2
−w 1
−w 2
.
( K + k + l ) / 2 N− ( K + k + l ) / 2
( K + k + l ) / 2
N
(23)
Plugging in the expressions obtained in (22) and (23) in (21) we have an explicit
expression of a lower bound on P succ . The number of iterations for our attack
to be successful is estimated to be of order
1
P succ
. We obtain therefore an upper-
bound on the expected number of iterations, what we denote by UpperBound .
Table 2 shows for various KKS parameters, p and l the expected number of
iterations.
1
P succ
Table 2. KKS Parameters with the corresponding value of
p n de = E {|I |}
Article
ρ
n
l
R
N
UpperBound
60
1023 0 . 059 1,023 8
192
3000 0 . 064 3,000
[KKS97]
1
91
111 . 26
60
1023 0 . 059 1,023 14 2
192
3000 0 . 064 3,000
14 . 17
91
48
255 0 . 188 255
273
1200 0 . 228 1,200
[KKS05]
8
1
66
26 . 41
48
255 0 . 188 255
273
1200 0 . 228 1,200
14 2
66
4 . 37
48
180 0 . 267 180
335
1100 0 . 305 1,100
[KKS97]
8
1
65
6 . 07
48
180 0 . 267 180
335
1100 0 . 305 1,100
15 2
65
1 . 82
[BMJ11]
1 / 2
320
12 1
165
1 / 2
11,626
1 . 24
[BMJ11]
1 / 2
448
13 1
230
1 / 2
16,294
1 . 34
[BMJ11]
1 / 2
512
13 1
264
1 / 2
18,586
1 . 39
1 / 2
1 / 2
1 . 61
[BMJ11]
768
13 1
395
27,994
[BMJ11]
1 / 2
1,024 14 1
527
1 / 2
37,274
1 . 85
Search WWH ::




Custom Search