Biomedical Engineering Reference
In-Depth Information
35. Gray HB, Winkler JR (2005) Long-range electron transfer. Proc Natl Acad Sci U S A 102
(10):3534-3539. doi: 10.1073/pnas.0408029102
36. McCreery RL (2004) Molecular electronic junctions. Chem Mater 16(23):4477-4496.
doi: 10.1021/Cm049517q
37. Flood AH, Stoddart JF, Steuerman DW, Heath JR (2004) Chemistry. Whence molecular
electronics? Science 306(5704):2055-2056. doi: 10.1126/science.1106195
38. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-
molecular devices. Nature 408(6812):541-548. doi: 10.1038/35046000
39. Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300
(5624):1384-1389. doi: 10.1126/science.1081572
40. Yasutomi S, Morita T, Imanishi Y, Kimura S (2004) A molecular photodiode system that can
switch photocurrent direction. Science 304(5679):1944-1947. doi: 10.1126/science.1098489
41. Wei L, Padmaja K, Youngblood WJ, Lysenko AB, Lindsey JS, Bocian DF (2004) Diverse
redox-active molecules bearing identical thiol-terminated tripodal tethers for studies of molec-
ular information storage. J Org Chem 69(5):1461-1469. doi: 10.1021/jo0349476
42. Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical sensors. Anal Chem
82(12):4723-4741. doi: 10.1021/Ac101075n
43. Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-
assembled monolayers. Coordin Chem Rev
254(15-16):1769-1802.
doi: 10.1016/
j.ccr.2009.12.023
44. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled
monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):
1103-1169. doi: 10.1021/Cr0300789
45. Chidsey CED, Bertozzi CR, Putvinski TM, Mujsce AM (1990) Coadsorption of ferrocene-
terminated and unsubstituted alkanethiols on gold - electroactive self-assembled monolayers.
J Am Chem Soc 112(11):4301-4306
46. Bertin PA, Meade TJ (2009) Novel redox active bifunctional crosslinkers from unsymmetrical
1,1 0 -disubstituted ferrocenes. Tetrahedron Lett 50(38):5409-5412. doi: 10.1016/j.tetlet.2009.07.056
47. Metzler-Nolte N, Salmain M (2008) The bioorganometallic chemistry of ferrocene. In:
Ferrrrocenes. Wiley, Chichester, pp 499-639. doi:10.1002/9780470985663.ch13
48. Martic S, Labib M, Shipman PO, Kraatz HB (2011) Ferrocene-peptido conjugates: from
synthesis to sensory applications. Dalton Trans 40(28):7264-7290. doi: 10.1039/C0dt01707h
49. Ricci F, Plaxco KW (2008) E-DNA sensors for convenient, label-free electrochemical detec-
tion of hybridization. Microchim Acta 163(3-4):149-155. doi: 10.1007/s00604-008-0015-4
50. Fan CH, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational
changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl
Acad Sci U S A 100(16):9134-9137. doi: 10.1073/pnas.1633515100
51. Du H, Disney MD, Miller BL, Krauss TD (2003) Hybridization-based unquenching of DNA
hairpins on Au surfaces: prototypical “molecular beacon” biosensors. J Am Chem Soc 125
(14):4012-4013. doi: 10.1021/Ja0290781
52. Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for respon-
sive nucleic acid architectures. Acc Chem Res 43(4):496-505. doi: 10.1021/ar900165x
53. Liu G, Wang J, Wunschel DS, Lin Y (2006) Electrochemical proteolytic beacon for detection
of matrix metalloproteinase activities. J Am Chem Soc 128(38):12382-12383. doi: 10.1021/
ja0626638
54. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer
progression. Nat Rev Cancer 2(3):161-174. doi: 10.1038/nrc745
55. Xiao H, Liu L, Meng F, Huang J, Li G (2008) Electrochemical approach to detect apoptosis.
Anal Chem 80(13):5272-5275. doi: 10.1021/ac8005268
56. Zhao N, He YQ, Mao X, Sun YH, Zhang XB, Li CZ, Lin YH, Liu GD (2010) Electrochemical
assay of active prostate-specific antigen (psa) using ferrocene-functionalized peptide probes.
Electrochem Commun 12(3):471-474. doi: 10.1016/j.elecom.2010.01.022
Search WWH ::




Custom Search