Biomedical Engineering Reference
In-Depth Information
154. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian
equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput
Phys 23:327-341
155. Ewing TJA, Kuntz ID (1997) Critical evaluation of search algorithms used in automated
molecular docking. J Comput Chem 18:1175-1189
156. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand
interactions. J Mol Biol 161:269-288
157. Kuntz ID, Brooijmans N (2003) Molecular recognition and docking algorithms. Annu Rev
Biophys Biomol Struct 32:335-373
158. Subrahmanyam S, Piletsky SA (2008) Computational design of molecularly imprinted
polymers. In: Potyrailo RA, Mirsky VM (eds) Combinatorial methods for chemical and
biological sensors. Springer, Germany
159. Schuettelkopf AW, Aalten DMF (2004) PRODRG: a tool for high throughput crystallography
of protein-ligand complexes. Acta Cryst 60:1355
160. Gromacs User Manual version 3.2, http://www.gromacs.org/
161. Biomolecular Simulation: The GROMOS96 Manual and User Guide
162. Pavel D, Lagowski J (2005) Computationally designed monomers and polymers for molecu-
lar imprinting of theophylline and its derivatives part I. Polymer 46:7528-7542
163. Sun HJ (1994) Force field for computation of conformational energies, structures, and
vibrational frequencies of aromatic polyesters. Comput Chem 15:752-768
164. Sun H, Mumby SJ, Maple JR et al (1994) An ab initio CFF93 all-atom force field for
polycarbonates. J Am Chem Soc 116:2978-2987
165. Brostow W (1979) Science of materials. Wiley, New York
166. Stewart JJP (1989) Optimization of parameters for semiempirical methods II applications.
J Comput Chem 10:221-264
167. Woolley RG (1991) Quantum chemistry beyond the Born-Oppenheimer approximation.
J Mol Struct (THEOCHEM) 230:17-46
168. Sherwood P (2006) Unpublished data on the website, Daresbury Laboratory, U.K. http://www.
docstoc.com/docs/82865507/Computational-Chemistry-at-Daresbury-Laboratory . Ad
on 28 Mar 2012
169. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 03, Ver 1997, Gaussian Inc.,
Pittsburgh
170. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian 03, Revision B. 05. Gaussian, Inc.,
Pittsburgh
171. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron density. Phys Rev 37:785-789
172. Alexander C, Davidson L, Hayes W (2003) Imprinted polymers: artificial molecular recog-
nition materials with applications in synthesis and catalysis. Tetrahedron 59:2025-2057
173. Brady L, Brzozowski AM, Derewenda ZS et al (1990) A serine protease triad forms the
catalytic centre of a triacylglycerol lipase. Nature 343:767-770
174. Schrag JD, Li YG, Wu S et al (1991) Ser-His-Glu triad forms the catalytic site of the lipase
from Geotrichum candidum. Nature 351:761-764
175. Baggiani C, Atanfossi L, Baravelle P et al (2005) Selectivity features of molecularly
imprinted polymers recognising the carbamate group. Anal Chim Acta 531:199-207
176. Wu L, Sun B, Li Y et al (2003) Rapid electrophoretic separations in short capillaries using
contactless conductivity detection and a sequential injection analysis manifold for hydrody-
namic sample loading. Analyst 128:944-949
177. Araujo PW, Brereton RG (1996) Experimental design III. Quantification. Trends Anal Chem
15:156-163
178. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New York
179. Steinke J, Sherrington DC, Dunkin IR (1995) Imprinting of synthetic polymers using
molecular templates, advances in polymer science. Springer, Berlin
Search WWH ::




Custom Search