Biomedical Engineering Reference
In-Depth Information
66. Jantarat C, Tangthong N, Songkro S et al (2008) S -Propranolol imprinted polymer nanopar-
ticle-on-microsphere composite porous cellulose membrane for the enantioselectively con-
trolled delivery of racemic propranolol. Int J Pharm 349:212-225
67. Barrett AM, Cullum VA (1968) Lack of interaction between propranolol and mebanazine.
J Pharm Pharmacol 20:911-915
68. Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymeri-
zation using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68:3769-3774
69. Suedee R, Jantarat C, Lindner W et al (2010) Development of a pH-responsive drug delivery
system for enantioselective-controlled delivery of
racemic drugs. J Control Release
142:122-131
70. Johnson KR, Young KK, Weimin F (1999) Antagonistic interplay between antimitotic and
G1-S arresting agents observed in experimental combination therapy. Clin Cancer Res
5:2559-2565
71. Kan X, Liu T, Zhou H et al (2010) Molecular imprinting polymer electrosensor based on gold
nanoparticles for theophylline recognition and determination. Microchim Acta 171:423-429
72. Giri S, Trewyn BG, Stellmaker MP et al (2005) Stimuli-responsive controlled-release
delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles.
Angew Chem Int Ed 44:5038-5044
73. Myers P, Bartle KD (2001) Capillary electrochromatography. The Royal Society of Chemistry,
London
74. Nilsson C, Nilsson S (2006) Nanoparticle-based pseudostationary phases in capillary
electrochromatography. Electrophoresis 27:76-83
75. Behnke B, Johansson J, Bayer E et al (2000) Fluorescence imaging of frit effects in capillary
separations. Electrophoresis 21:3102-3108
76. Sp´gel P, Nilsson S (2002) A new approach to capillary electrochromatography: disposable
molecularly imprinted nanoparticles. Am Lab 34:29-33
77. Nilsson C, Viberg P, Sp´gel P et al (2006) Nanoparticle-based continuous full filling capillary
electrochromatography/electrospray ionization-mass spectrometry for separation of neutral
compounds. Anal Chem 78:6088-6095
78. G
achmann K (1997) Application of particles as pseudo-stationary phases in
electrokinetic chromatography. J Chromatogr A 780:63-73
79. Nilsson J, Sp´gel P, Nilsson S (2004) Molecularly imprinted polymer formats for capillary
electrochromatography. J Chromatogr B Anal Technol Biomed Life Sci 804:3-12
80. Qu P, Lei J, Zhang L et al (2010) Molecularly imprinted magnetic nanoparticles as tunable
stationary phase located in microfluidic channel for enantioseparation. J Chromatogr A
1217:6115-6121
81. Hayakawa I, Atarashi S, Yokohama S et al (1986) Synthesis and antibacterial activities of
optically active ofloxacin. Antimicrob Agents Chemother 29:163-164
82. Biffis A, Graham NB, Siedlaczek G et al (2001) The synthesis, characterization and molecu-
lar recognition properties of imprinted microgels. Macromol Chem Phys 202:163-171
83. Markowitz MA, Kust PR, Deng G et al (2000) Catalytic silica particles via template-directed
molecular imprinting. Langmuir 16:1759-1765
84. Maddock SC, Pasetto P, Resmini M (2004) Novel imprinted soluble microgels with hydro-
lytic catalytic activity. Chem Commun 10:536-537
85. Pasetto P, Maddock SC, Resmini M (2005) Synthesis and characterisation of molecularly
imprinted catalytic microgels for carbonate hydrolysis. Anal Chim Acta 542:66-75
86. Pasetto P, Flavin K, Resmini M (2009) Simple spectroscopic method for titration of binding
sites in molecularly imprinted nanogels with hydrolase activity. Biosens Bioelectron
25:572-578
87. Chen Z, Hua Z, Wang J et al (2007) Molecularly imprinted soluble nanogels as a peroxidase-
like catalyst in the oxidation reaction of homovanillic acid under aqueous conditions. Appl
Catal A Gen 328:252-258
ottlicher B, B
Search WWH ::




Custom Search