Biomedical Engineering Reference
In-Depth Information
Jana, S., Salehi-Khojin, A. and Zhong, W.-H. (2007), Enhancement of fluid thermal
conductivity by the addition of single and hybrid nano-additives, Thermochim.
Acta, Vol. 462, pp. 45-55.
Jang, S. P. and Choi, S. U. S. (2004), Role of Brownian motion in the enhanced
thermal conductivity of nanofluids, Appl. Phys. Lett., Vol. 84, pp. 4316-4318.
Jang, S. P. and Choi, S. U. S. (2007), Effects of various parameters on nanofluid
thermal conductivity, Trans. ASME, J. Heat Trans., Vol. 129, pp. 617-623.
Jha, N. and Ramaprabhu, S. (2008), Synthesis and thermal conductivity of copper
nanoparticle decorated multiwalled carbon nanotubes based nanofluids, J.
Phys. Chem. C, Vol. 112, pp. 9315-9319.
Jha, N. and Ramaprabhu, S. (2009), Thermal conductivity studies of metal dispersed
multiwalled carbon nanotubes in water and ethylene glycol based nanofluids, J.
Appl. Phys., Vol. 106, p. 084317.
Jiang, W., Ding, G. and Peng, H. (2009), Measurement and model on thermal
conductivities of carbon nanotube nanorefrigerants, Int. J. Therm. Sci., Vol. 48,
pp. 1108-1115.
Jung, J.-Y. and Yoo, J. Y. (2009), Thermal conductivity enhancement of nanofluids
in conjunction with electrical double layer (EDL), Int. J. Heat Mass Tran., Vol.
52, pp. 525-528.
Jwo, C.-S., Teng, T.-P. and Chang, H. (2007), A simple model to estimate thermal
conductivity of fluid with acicular nanoparticles, J. Alloy. Comp., Vol. 434-435,
pp. 569-571.
Kang, H. U., Kim, S. H. and Oh, J. M. (2006), Estimation of thermal conductivity of
nanofluid using experimental effective particle volume, Exp. Heat Transfer, Vol.
19, pp. 181-191.
Kao, M. J., Lo, C. H., Tsung, T. T., Wu, Y. Y., Jwo, C. S. and Lin, H. M. (2007),
Copper-oxide brake nanofluid manufactured using arc-submerged nanoparticle
synthesis system, J. Alloy. Comp., Vol. 434-435, pp. 672-674.
Karthikeyan, N. R., Philip, J. and Raj, B. (2008), Effect of clustering on the thermal
conductivity of nanofluids, Mater. Chem. Phys., Vol. 109, pp. 50-55.
Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastman, J. A. (2002), Mechanisms
of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat
Mass Trans., Vol. 45, pp. 855-863.
Kim, H. J., Bang, I. C. and Onoe, J. (2009), Characteristic stability of bare Au-water
nanofluids fabricated by pulsed laser ablation in liquids, Opt. Laser. Eng., Vol.
47, pp. 532-538.
Kim, S. H., Choi, S. R. and Kim, D. (2007), Thermal conductivity of metal-oxide
nanofluids: particle size dependence and effect of laser irradiation, Trans.
ASME, J. Heat. Trans., Vol. 129, pp. 298-307.
Kim, S., Kim, C., Lee, W.-H. and Park, S.-R. (2011), Rheological properties of
alumina nanofluids and their implication to the heat transfer enhancement
mechanism, J. Appl. Phys., Vol. 110, p. 034316.
Koo, J. and Kleinstreuer, C. (2004), A new thermal conductivity model
￿ ￿ ￿ ￿ ￿ ￿
for
nanofluids, J. Nanopart. Res., Vol. 6, pp. 577-588.
Kumar, S. A., Meenakshi, K. S., Narashimhan, B. R. V., Srikanth, S. and
Arthanareeswaran, G. (2009), Synthesis and characterization of copper
nanofluid by a novel one-step method, Mater. Chem. Phys., Vol. 113, pp. 57-62.
Lee, D., Kim, J.-W. and Kim, B. G. (2006), A new parameter to control heat
Search WWH ::




Custom Search