Biomedical Engineering Reference
In-Depth Information
von heterogenen Substanzen: I. Dielektrizitatskonstanten und Leitfahigkeiten
der Mischkorper aus isotropen Substanzen, Ann. Physik, Vol. 24, pp. 636-664.
Cao, H. L., Qian, X. F., Gong, Q., Du, W. M., Ma, X. D. and Zhu, Z. K. (2006),
Shape- and size- controlled synthesis of nanometer zno from a simple solution
route at room temperature, Nanotechnology, Vol. 17, pp. 3632-3636.
Chang, H. and Chang, Y. C. (2008), Fabrication of Al 2 O 3 nanofluid by a plasma arc
nanoparticles synthesis system, J. Mater. Process. Tech., Vol. 207, pp. 193-199.
Chang, M.-H., Liu, H.-S. and Tai, C. Y. (2011), Preparation of copper oxide
nanoparticles and its application in nanofluid, Powder Technol., Vol. 207,
pp. 378-386.
Chen, H., Ding, Y. He, Y. and Tan, C. (2007), Rheological behaviour of ethylene
glycol based titania nanofluids, Chem. Phys. Lett., Vol. 444, pp. 333-337.
Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A. A. and
Bavykin, D. V. (2008a), Heat transfer and flow behaviour of aqueous
suspensions of titanate nanotubes (nanofluids), Powder Technol., Vol. 183,
pp. 63-72.
Chen, L., Xie, H., Li, Y. and Yu, W. (2008b), Nanofluids containing carbon
nanotubes treated by mechanochemical reaction, Thermochim. Acta, Vol. 477,
pp. 21-24.
Choi, C., Yoo, H. S. and Oh, J. M. (2008), Preparation and heat transfer properties
of nanoparticle-in-transformer oil dispersions as advanced energy-efficient
coolants, Curr. Appl. Phys., Vol. 8, pp. 710-712.
Choi, S. U. S. (1995), Enhancing thermal conductivity of fluids with nanoparticles.
In Proceedings of the 1995 ASME International Mechanical Engineering
Congress and Exposition, San Francisco, CA, USA.
Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A. (2001),
Anomalous thermal conductivity enhancement in nanotube suspensions, Appl.
Phys. Lett., Vol. 79, pp. 2252-2254.
Chon, C. H., Kihm, K. D., Lee, S. P. and Choi, S. U. S. (2005), Empirical correlation
finding the role of temperature and particle size for nanofluid (Al 2 O 3 ) thermal
conductivity enhancement, Appl. Phys. Lett., Vol. 87, p. 153107.
Chopkar, M., Das, P. K. and Manna, I. (2006), Synthesis and characterization of
nanofluid for advanced heat transfer applications, Scripta Mater., Vol. 55,
pp. 549-552.
Chopkar, M., Kumar, S., Bhandari, D. R., Das, P. K. and Manna, I. (2007),
Development and characterization of Al 2 Cu and Ag 2 Al nanoparticle dispersed
water and ethylene glycol based nanofluid, Mat. Sci. Eng. B, Vol. 139, pp. 141-
148.
Das, S. K., Putra, N., Thiesen, P. and Roetzel, W. (2003), Temperature dependence
of thermal conductivity enhancement for nanofluids. Trans. ASME, J. Heat
Trans., Vol. 125, pp. 567-574.
Ding, Y., Alias, H., Wen, D. and Williams, R. A. (2006), Heat transfer of aqueous
suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Tran.,
Vol. 49, pp. 240-250.
Eastman, J. A., Choi, S. U. S., Li, S., Yu, W. and Thompson, L. J. (2001),
Anomalously increased effective thermal conductivity of ethylene glycol-based
nanofluids containing copper nanoparticles, Appl. Phys. Lett., Vol. 78, pp. 718-
720.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search