Biomedical Engineering Reference
In-Depth Information
Experimental investigation of viscosity and specific heat of silicon dioxide
nanofluids, Micro Nano Lett., Vol. 2, No. 3, pp. 67-71.
Namburu, P. K., Kulkarni, D. P., Misra, D. and Das, D. K. (2007b), Viscosity of
copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp.
Therm. Fluid Sci., Vol. 32, pp. 397-402.
Nguyen, C. T., Roy, G., Gautheir, C. and Galanis, N. (2007a), Heat transfer
enhancement using Al 2 O 3 -water nanofluid for an electronic liquid cooling
system, Appl. Therm. Eng., Vol. 27, pp. 1501-1506.
Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Mare´ , T., Boucher, S. and
Mintsa, H. A. (2007b), Temperature and particle-size dependent viscosity data
for water-based nanofluids - Hysteresis phenomenon, Int. J. Heat Fluid Flow,
vol. 28, pp. 1492-1506.
Pastoriza-Gallego, M. J., Casanova, C., Pa´ ramo, R., Barbe´ s, B., Legido, J. L. and
Pin˜ eiro, M. M. (2009), A study on stability and thermophysical properties,
density and viscosity of Al 2 O 3 in water nanofluid, J. Appl. Phys., Vol. 106,
p. 064301.
Phuoc, X. T. and Lyons, D. K. (2007), Nanofluids for use as ultra-deep drilling
fluids. U.S. Department of Enegy, Office of Fossil Energy: National Energy
Technology
Laboratory
[Online] Available
http://www.netl.doe.gov/
publications/factsheets/rd/R&D108.pdf.
Prasher, R., Song, D. and Wang, J. (2006), Measurements of nanofluid viscosity and
its implications for thermal applications, Appl. Phys. Lett., Vol. 89, p. 133108.
Schmidt, A. J., Chiesa, M., Torchinsky, D. H., Johnson, J. A., Boustani, A.,
McKinley, G. H., Nelson, K. A. and Chen, G. (2008), Experimental
investigation of nanofluid shear and longitudinal viscosities, Appl. Phys. Lett.,
Vol. 92, p. 244107.
Shen, B. (2008), Minimum quantity lubrication grinding using nanofluids. [Online]
Available http://deepblue.lib.umich.edu/bitstream/2027.42/60683/1/binshen_1.
pdf.
Shima, P. D., Philip, J. and Raj, B. (2010), Influence of aggregation on thermal
conductivity in stable and unstable nanofluids, Appl. Phys. Lett., Vol. 97,
p. 153113.
Singh, D., Timofeeva, E., Yu, W., Routbort, J., France, D., Smith, D. and Lopez-
Cepero, J. M. (2009), An investigation of silicon carbide-water nanofluid for
heat transfer applications, J. Appl. Phys., Vol. 105, p. 064306.
Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M. and Tolmachev, Y. V. (2007),
Thermal conductivity and particle agglomeration in alumina nanofluids:
Experiment and theory, Phys. Rev. E, Vol. 76, p. 061203.
Timofeeva, E., Smith, D., Yu, W., Routbort, J. and Singh, D. (2009), Nanofluid
development for engine cooling systems. [Online] Available http://www1.eere.
energy.gov/vehiclesandfuels/pdfs/merit_review_2009/
vehicles_and_systems_simulation/vssp_21_timofeeva.pdf.
Tsai, C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y. and Chen, P. H. (2004),
Effect of structural character of gold nanoparticles in nanofluid on heat pipe
thermal performance, Mater. Lett., Vol. 58, pp. 1461-1465.
Turgut, A., Tavman, I., Chirtoc M., Schuchmann, H. P., Sauter, C. and Tavman, S.
(2009), Thermal conductivity and viscosity measurements of water-based TiO2
nanofluids, Int. J. Thermophys., Vol. 30, pp. 1213-1226.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search