Biomedical Engineering Reference
In-Depth Information
10.8 References
Adachi, Y., Nakaishi, K. and Tamaki, M. (1998), Viscosity of a dilute suspension of
sodium montmorillonite in an electrostatically stable condition, J. Colloid
Interf. Sci., Vol. 198, pp. 100-105.
Anoop, K. B., Kabelac, S., Sundararajan, T. and Das, S. K. (2009), Rheological and
flow characteristics of nanofluids: Influence of electroviscous effects and particle
agglomeration, J. Appl. Phys., Vol. 106, p. 034909.
Batchelor, G. K. (1977), Effect of Brownian-motion on bulk stress in a suspension of
spherical-particles, J. Fluid Mech., Vol. 83, pp. 97-117.
Chein, R. and Huang, G. (2005), Analysis of microchannel heat sink performance
using nanofluids, Appl. Therm. Eng., Vol. 25, No. 17, pp. 3104-3114.
Chen, H., Ding, Y. He, Y. and Tan, C. (2007a), Rheological behaviour of ethylene
glycol based titania nanofluids, Chem. Phys. Lett., Vol. 444, pp. 333-337.
Chen, H., Ding, Y. and Tan, C. (2007b), Rheological behaviour of nanofluids, New
J. Phys., Vol. 9, pp. 367(1-25).
Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A. A. and
Bavykin, D. V. (2008), Heat transfer and flow behaviour of aqueous
suspensions of titanate nanotubes (nanofluids), Powder Technol., Vol. 183,
pp. 63-72.
Chen, H., Ding, Y. and Lapkin, A. (2009), Rheological behaviour of nanofluids
containing tube/rod-like nanoparticles, Powder Technol., Vol. 194, pp. 132-141.
Cheng, N.-S. and Law, A.W.-K. (2003), Exponential formula for computing
effective viscosity, Powder Technol., Vol. 129, pp. 156-160.
Chevalier, J., Tillement, O. and Ayela, F. (2007), Rheological properties of
nanofluids flowing through microchannels, Appl. Phys. Lett., Vol. 91, p. 233103.
Chiang, P. C., Hung, D. S., Wang, J. W., Ho, C. S. and Yao, Y. D. (2007),
Engineering water-dispersible Fe-Pt nanoparticles for biomedical applications,
IEEE T. Magn., Vol. 43, No. 6, pp. 2445-2447.
Choi, S. U. S. (1995), Enhancing thermal conductivity of fluids with nanoparticles.
In Proceedings of the 1995 ASME International Mechanical Engineering
Congress and Exposition, San Francisco, CA, USA.
Das, S. K., Putra, N., Thiesen, P. and Roetzel, W, (2003a), Temperature dependence
of thermal conductivity enhancement for nanofluids. Trans. ASME, J. Heat
Trans., Vol. 125, pp. 567-574.
Das, S. K., Putra, N. and Roetzel, W. (2003b), Pool boiling characteristics of nano-
fluids, Int. J. Heat Mass Tran., Vol. 46, pp. 851-862.
Duncan, A. B. and Peterson, G. P. (1994), Review of microscale heat transfer, J.
Appl. Mech. Rev., Vol. 47, No. 9, pp. 397-428.
Eastman, J. A., Choi, S. U. S., Li, S., Yu, W. and Thompson, L. J. (2001),
Anomalously increased effective thermal conductivity of ethylene glycol-based
nanofluids containing copper nanoparticles, Appl. Phys. Lett., Vol. 78, pp. 718-
720.
Eastman, J. A., Phillpot, S. R., Choi, S. U. S. and Keblinski, P. (2004), Thermal
transport in nanofluids, Ann. Rev. Mater. Res., Vol. 34, No. 1, pp. 219-246.
Egan, V. M., Walsh, P. A. and Walsh, E. J. (2009), On viscosity measurements of
nanofluids in micro and mini tube flow, J. Phys. D: Appl. Phys., Vol. 42,
p. 165502.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search